| inferCSN-package | _*inferCSN*_: *infer*ring *C*ell-*S*pecific gene regulatory *N*etwork |
| as_matrix | Convert dgCMatrix into a dense matrix |
| calculate_acc | Calculate accuracy value |
| calculate_auc | Calculate AUPRC and AUROC values |
| calculate_gene_rank | Rank TFs and genes in network |
| check_sparsity | Check sparsity of matrix |
| coef.srm | Extracts a specific solution in the regularization path |
| coef.srm_cv | Extracts a specific solution in the regularization path |
| example_ground_truth | Example ground truth data |
| example_matrix | Example matrix data |
| example_meta_data | Example meta data |
| filter_sort_matrix | Filter and sort matrix |
| fit_sparse_regression | Fit a sparse regression model |
| inferCSN | *infer*ring *C*ell-*S*pecific gene regulatory *N*etwork |
| inferCSN-method | *infer*ring *C*ell-*S*pecific gene regulatory *N*etwork |
| log_message | Print diagnostic message |
| network_format | Format network table |
| network_sift | Sifting network |
| normalization | Normalize numeric vector |
| parallelize_fun | Parallelize a function |
| plot_contrast_networks | Plot contrast networks |
| plot_dynamic_networks | Plot dynamic networks |
| plot_embedding | Plot embedding |
| plot_network_heatmap | Plot network heatmap |
| plot_scatter | Plot expression data in a scatter plot |
| plot_static_networks | Plot dynamic networks |
| plot_weight_distribution | Plot weight distribution |
| predict.srm | Predicts response for a given sample |
| predict.srm_cv | Predicts response for a given sample |
| print.srm | Prints a summary of 'fit_sparse_regression' |
| print.srm_cv | Prints a summary of 'fit_sparse_regression' |
| r_square | R^2 (coefficient of determination) |
| single_network | Construct network for single target gene |
| sparse_regression | Sparse regression model |
| table_to_matrix | Switch network table to matrix |