
Package ‘OTrecod’
October 12, 2022

Title Data Fusion using Optimal Transportation Theory

Version 0.1.2

Maintainer Gregory Guernec <otrecod.pkg@gmail.com>

Description In the context of data fusion, the package provides a set of functions dedi-
cated to the solving of 'recoding problems' using optimal transportation the-
ory (Gares, Guernec, Savy (2019) <doi:10.1515/ijb-2018-
0106> and Gares, Omer (2020) <doi:10.1080/01621459.2020.1775615>). From two databases with no over-
lapping part except a subset of shared variables, the functions of the package assist users un-
til obtaining a unique synthetic database, where the missing information is fully completed.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.0

Depends R (>= 3.5)

Imports stats, dplyr, mice, missMDA, plyr, FactoMineR, StatMatch,
proxy, rdist, ROI, ROI.plugin.glpk, ompr, ompr.roi, party, vcd

Suggests testthat, knitr, rmarkdown, covr

VignetteBuilder knitr

NeedsCompilation no

Author Gregory Guernec [aut, cre],
Valerie Gares [aut],
Pierre Navaro [ctb],
Jeremy Omer [ctb],
Philippe Saint-Pierre [ctb],
Nicolas Savy [ctb]

Repository CRAN

Date/Publication 2022-10-05 10:40:02 UTC

R topics documented:
api29 . 2

1

https://doi.org/10.1515/ijb-2018-0106
https://doi.org/10.1515/ijb-2018-0106
https://doi.org/10.1080/01621459.2020.1775615

2 api29

api35 . 3
avg_dist_closest . 4
compare_lists . 7
error_group . 8
ham . 10
imput_cov . 12
indiv_grp_closest . 14
indiv_grp_optimal . 18
merge_dbs . 22
ncds_14 . 27
ncds_5 . 28
OT_joint . 29
OT_outcome . 35
power_set . 43
proxim_dist . 44
select_pred . 49
simu_data . 57
tab_test . 58
transfo_dist . 59
transfo_quali . 63
transfo_target . 64
verif_OT . 66

Index 71

api29 Student performance in California schools: the results of the county
29

Description

This database is a sample of the API program https://www.cde.ca.gov/re/pr/api.asp that
ended in 2018. The sample is extracted from the data api of the package survey, related to the
results of the county 29 (Nevada). The database contains information for the 418 schools of this
county having at least 100 students. Missing information has been randomly (and voluntary) added
to the awards and ell variables (4% and 7% respectively). Several variables have been voluntary
categorized from their initial types.

Usage

api29

Format

A data.frame with 418 schools (rows) and 12 variables

cds the school identifier

apicl_2000 the API score in 2000 classed in 3 ordered levels: [200-600],(600-800],(800-1000]

https://www.cde.ca.gov/re/pr/api.asp

api35 3

stype the school type in a 3 ordered levels factor: Elementary, Middle or High School

awards the school eligible for awards program ? Two possible answers: No or Yes. This variable
counts 4% of missing information.

acs.core the number of core academic courses in the school

api.stu the number of students tested in the school

acs.k3.20 the average class size years K-3 in the school. This variable is stored in a 3-levels factor:
Unknown, <=20, >20.

grad.sch the percentage of parents with postgraduate education stored in a 3 ordered levels factor
of percents: 0, 1-10, >10

ell the percentage of English language learners stored in a 4 ordered levels factor: [0-10],(10-30],(30-50],(50-100].
This variable counts 7% of missing information.

mobility the percentage of students for whom this is the first year at the school, stored in 2 levels:
[0-20] and (20-100]

meals the percentage of students eligible for subsidized meals stored in a 4 balanced levels factor
(By quartiles): [0-25], (25-50], (50-75], (75-100]

full the percentage of fully qualified teachers stored in a 2-levels factor: 1: For strictly less than
90%, 2 otherwise

Source

This database is a sample of the data api from the package survey.

api35 Student performance in California schools: the results of the county
35

Description

This database is a sample of the API program https://www.cde.ca.gov/re/pr/api.asp that
ended in 2018. The sample is extracted from the data api of the package survey, related to the
results of the county 35 (San Benito). The database contains information for the 362 schools of this
county having at least 100 students. Missing information has been randomly (and voluntary) added
to the awards and ell variables (4% and 7% respectively). Several variables have been voluntary
categorized from their initial types.

Usage

api35

https://www.cde.ca.gov/re/pr/api.asp

4 avg_dist_closest

Format

A data.frame with 362 schools (rows) and 12 variables

cds the school identifier

apicl_1999 the API score in 1999 classed in 4 ordered levels: G1,G2,G3, G4

stype the school type in a 3 ordered levels factor: Elementary, Middle or High School

awards the school eligible for awards program ? Two possible answers: No or Yes. This variable
counts 4% of missing information.

acs.core the number of core academic courses in the school

api.stu the number of students tested in the school

acs.k3.20 the average class size years K-3 in the school. This variable is stored in a 3-levels factor:
Unknown, <=20, >20.

grad.sch the percentage of parents with postgraduate education stored in a 3 ordered levels factor
of percents: 0, 1-10, >10

ell the percentage of English language learners stored in a 4 ordered levels factor: [0-10],(10-30],(30-50],(50-100].
This variable counts 7% of missing information.

mobility the percentage of students for whom this is the first year at the school, stored in 2 levels:
1 and 2

meals the percentage of students eligible for subsidized meals stored in a 4 balanced levels factor
(By quartiles): [0-25], (25-50], (50-75], (75-100]

full the percentage of fully qualified teachers stored in a 2-levels factor: 1: For strictly less than
90%, 2 otherwise

Source

This database is a sample of the data api from the package survey.

avg_dist_closest avg_dist_closest()

Description

This function computes average distances between levels of two categorical variables located in two
distinct databases.

Usage

avg_dist_closest(proxim, percent_closest = 1)

avg_dist_closest 5

Arguments

proxim a proxim_dist object
percent_closest

a ratio between 0 and 1 corresponding to the desired part of rows (or statistical
units, or individuals) that will participate to the computation of the average dis-
tances between levels of factors or between an individual (a row) and levels of
only one factor. Indeed, target variables are factors and each level of factor is
characterized by a subset of rows, themselves characterized by their covariate
profiles. These rows can be ordered according to their distances at their factor
level. When this ratio is set to 1 (default setting), all rows participate to the com-
putation, nevertheless when this ratio is less than 1, only rows with the smallest
factor level distances will be kept for the computation (see ’Details’).

Details

The function avg_dist_closest is an intermediate function for the implementation of original
algorithms dedicated to the solving of recoding problems in data fusion using Optimal Transporta-
tion theory (for more details, consult the corresponding algorithms called OUTCOME, R_OUTCOME,
JOINT and R_JOINT, in the reference (2)). The function avg_dist_closest is so directly imple-
mented in the OT_outcome and OT_joint functions but can also be used separately. The function
avg_dist_closest uses, in particular, the distance matrix D (that stores distances between rows of
A and B) from the function proxim_dist to produce three distinct matrices saved in a list object.
Therefore, the function requires in input, the specific output of the function proxim_dist which is
available in the package and so must be used beforehand. In consequence, do not use this function
directly on your database, and do not hesitate to consult the provided examples provided for a better
understanding.

DEFINITION OF THE COST MATRIX

Assuming that A and B are two databases with a set of shared variables and that a same information
(referred to a same target population) is stored as a variable Y in A and Z in B, such that Y is
unknown in B and Z is unknown in A, whose encoding depends on the database (nY levels in A and
nZ levels in B). A distance between one given level y of Y and one given level z of Z is estimated
by averaging the distances between the two subsets of individuals (units or rows) assigned to y in
A and z in B, characterized by their vectors of covariates. The distance between two individuals
depends on the variations between the shared covariates, and so depends on the chosen distance
function using the function proxim_dist. For these computations, all the individuals concerned
by these two levels can be taken into account, or only a part of them, depending on the argument
percent_closest. When percent_closest < 1, the average distance between an individual i and
a given level of factor z only uses the corresponding part of individuals related to z that are the
closest to i. Therefore, this choice influences the estimations of average distances between levels of
factors but also permits to reduce time computation when necessary.

The average distance between each individual of Y (resp. Z) and each levels of Z (resp. Y) are
returned in output, in the object DindivA (DindivB respectively). The average distance between
each levels of Y and each levels of Z are returned in a matrix saved in output (the object Davg).
Davg returns the computation of the cost matrix D, whose dimensions (nY × nZ) correspond to
the number of levels of Y (rows) and Z (columns). This matrix can be seen as the ability for an
individual (row) to move from a given level of the target variable (Y) in A to a given level of Z in
the database B (or vice versa).

6 avg_dist_closest

Value

A list of 3 matrices is returned:

Davg the cost matrix whose number of rows corresponds to nY , the number of levels
of the target variable Y in the database A, and whose number of columns corre-
sponds to nZ : the number of levels of the target variable in B. In this case, the
related cost matrix can be interpreted as the ability to move from one level of Y
in A to one level of Z in B. Davg[P,Q] refers to the average distance between
the modality P of Y (only known in A) and modality Q of Z (only known in B).

DindivA a matrix whose number of rows corresponds to the number of rows of the first
database A and number of columns corresponds to nZ , the number of levels
of the target variable Z in the second database B. DindivA[i,Q] refers to the
average distance between the ith individual (or row) of the first database and
a chosen proportion of individuals (percent_closest set by the user) of the
second database having the modality Q of Z.

DindivB a matrix whose number of rows corresponds to the number of rows of the second
database B and number of columns corresponds to nA, the number of levels of
the target variable in the first database A. DindivB[k,P] refers to the average
distance between the kth individual (or row) of the second database and a chosen
proportion of individuals (depending on percent_closest) of the first database
having the modality P of Y .

Author(s)

Gregory Guernec, Valerie Gares, Jeremy Omer

<otrecod.pkg@gmail.com>

References

1. Gares V, Dimeglio C, Guernec G, Fantin F, Lepage B, Korosok MR, savy N (2019). On the
use of optimal transportation theory to recode variables and application to database merging.
The International Journal of Biostatistics. Volume 16, Issue 1, 20180106, eISSN 1557-4679.
doi:10.1515/ijb-2018-0106

2. Gares V, Omer J (2020) Regularized optimal transport of covariates and outcomes in data re-
coding. Journal of the American Statistical Association. doi: 10.1080/01621459.2020.1775615

See Also

proxim_dist

Examples

data(simu_data)
The covariates of the data are prepared according to the distance chosen
using the transfo_dist function

Example with The Manhattan distance

man1 <- transfo_dist(simu_data,

https://doi.org/10.1080/01621459.2020.1775615

compare_lists 7

quanti = c(3, 8), nominal = c(1, 4:5, 7),
ordinal = c(2, 6), logic = NULL, prep_choice = "M"

)
mat_man1 <- proxim_dist(man1, norm = "M")

proxim_dist() fixes the chosen distance function,
and defines neighborhoods between profiles and individuals

The following row uses only 80 percents of individuals of each level
of factors for the computation of the average distances:

neig_man1 <- avg_dist_closest(mat_man1, percent_closest = 0.80)

compare_lists compare_lists()

Description

This function compares the elements of two lists of same length.

Usage

compare_lists(listA, listB)

Arguments

listA a first list

listB a second list

Value

A boolean vector of same length as the two lists, which ith element is TRUE if the ith element is
different between the 2 lists, or FALSE otherwise

Author(s)

Gregory Guernec

<otrecod.pkg@gmail.com>

Examples

data1 <- data.frame(Gender = rep(c("m", "f"), 5), Age = rnorm(5, 20, 4))
data2 <- data.frame(Gender = rep(c("m", "f"), 5), Age = rnorm(5, 21, 5))

list1 <- list(A = 1:4, B = as.factor(c("A", "B", "C")), C = matrix(1:6, ncol = 3))
list2 <- list(A = 1:4, B = as.factor(c("A", "B")), C = matrix(1:6, ncol = 3))
list3 <- list(A = 1:4, B = as.factor(c("A", "B", "C")), C = matrix(c(1:5, 7), ncol = 3))
list4 <- list(A = 1:4, B = as.factor(c("A", "B", "C")), C = matrix(1:6, ncol = 2))

8 error_group

list5 <- list(A = 1:4, B = as.factor(c("A", "B")), C = matrix(1:6, ncol = 2))
list6 <- list(A = 1:4, B = as.factor(c("A", "B")), C = data1)
list7 <- list(A = 1:4, B = as.factor(c("A", "B")), C = data2)

OTrecod::compare_lists(list1, list2)
OTrecod::compare_lists(list1, list3)
OTrecod::compare_lists(list1, list4)
OTrecod::compare_lists(list1, list5)
OTrecod::compare_lists(list6, list7)

error_group error_group()

Description

This function studies the association between two categorical distributions with different numbers
of modalities.

Usage

error_group(REF, Z, ord = TRUE)

Arguments

REF a factor with a reference number of levels.

Z a factor with a number of levels greater than the number of levels of the refer-
ence.

ord a boolean. If TRUE, only neighboring levels of Z will be grouped and tested
together.

Details

Assuming that Y and Z are categorical variables summarizing a same information, and that one
of the two related encodings is unknown by user because this latter is, for example, the result
of predictions provided by a given model or algorithm, the function error_group searches for
potential links between the modalities of Y to approach at best the distribution of Z.

Assuming that Y and Z have nY and nZ modalities respectively so that nY > nZ , in a first step,
the function error_group combines modalities of Y to build all possible variables Y ′ verifying
nY ′ = nZ . In a second step, the association between Z and each new variable Y ′ generated is
measured by studying the ratio of concordant pairs related to the confusion matrix but also using
standard criterions: the Cramer’s V (1), the Cohen’s kappa coefficient (2) and the Spearman’s rank
correlation coefficient.

According to the type of Y , different combinations of modalities are tested:

• If Y and Z are ordinal (ord = TRUE), only consecutive modalities of Y will be grouped to build
the variables Y ′.

error_group 9

• If Y and Z are nominal (ord = FALSE), all combinations of modalities of Y (consecutive or
not) will be grouped to build the variables Y ′.

All the associations tested are listed in output as a data.frame object. The function error_group is
directly integrated in the function verif_OT to evaluate the proximity of two multinomial distribu-
tions, when one of them is estimated from the predictions of an OT algorithm.

Example: Assuming that Y = (1, 1, 2, 2, 3, 3, 4, 4) and Z = (1, 1, 1, 1, 2, 2, 2, 2), so nY = 4
and nZ = 2 and the related coefficient of correlation cor(Y, Z) is 0.89. Are there groupings
of modalities of Y which contribute to improving the proximity between Y and Z ? From Y ,
the function error_group gives an answer to this question by successively constructing the vari-
ables: Y1 = (1, 1, 1, 1, 2, 2, 2, 2), Y2 = (1, 1, 2, 2, 1, 1, 2, 2), Y3 = (1, 1, 2, 2, 2, 2, 1, 1) and tests
cor(Z, Y1) = 1, cor(Z, Y2) = 0, cor(Z, Y3) = 0. Here, the tests permit to conclude that the
difference of encodings between Y and Z resulted in fact in a simple grouping of modalities.

Value

A data.frame with five columns:

combi the first column enumerates all possible groups of modalities of Y to obtain the
same number of levels as the reference.

error_rate the second column gives the corresponding rate error from the confusion matrix
(ratio of non-diagonal elements)

Kappa this column indicates the result of the Cohen’s kappa coefficient related to each
combination of Y

Vcramer this column indicates the result of the Cramer’s V criterion related to each com-
bination of Y

RankCor this column indicates the result of the Spearman’s coefficient of correlation re-
lated to each combination of Y

Author(s)

Gregory Guernec

<otrecod.pkg@gmail.com>

References

1. Cramér, Harald. (1946). Mathematical Methods of Statistics. Princeton: Princeton University
Press.

2. McHugh, Mary L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica. 22
(3): 276–282

Examples

Basic examples:
sample1 <- as.factor(sample(1:3, 50, replace = TRUE))
length(sample1)
sample2 <- as.factor(sample(1:2, 50, replace = TRUE))

10 ham

length(sample2)
sample3 <- as.factor(sample(c("A", "B", "C", "D"), 50, replace = TRUE))
length(sample3)
sample4 <- as.factor(sample(c("A", "B", "C", "D", "E"), 50, replace = TRUE))
length(sample4)

By only grouping consecutive levels of sample1:
error_group(sample1, sample4)
By only all possible levels of sample1, consecutive or not:
error_group(sample2, sample1, ord = FALSE)

using a sample of the tab_test object (3 complete covariates)
Y1 and Y2 are a same variable encoded in 2 different forms in DB 1 and 2:
(4 levels for Y1 and 3 levels for Y2)

data(tab_test)
Example with n1 = n2 = 70 and only X1 and X2 as covariates
tab_test2 <- tab_test[c(1:70, 5001:5070), 1:5]

An example of JOINT model (Manhattan distance)
Suppose we want to impute the missing parts of Y1 in DB2 only ...
try1J <- OT_joint(tab_test2,

nominal = c(1, 4:5), ordinal = c(2, 3),
dist.choice = "M", which.DB = "B"

)

Error rates between Y2 and the predictions of Y1 in the DB 2
by grouping the levels of Y1:
error_group(try1J$DATA2_OT$Z, try1J$DATA2_OT$OTpred)
table(try1J$DATA2_OT$Z, try1J$DATA2_OT$OTpred)

ham ham()

Description

This function computes a matrix distance using the Hamming distance as proximity measure.

Usage

ham(mat_1, mat_2)

Arguments

mat_1 a vector, a matrix or a data.frame of binary values that may contain missing data
mat_2 a vector, a matrix or a data.frame of binary values with the same number of

columns as mat_1 that may contain missing data

ham 11

Details

ham returns the pairwise distances between rows (observations) of a single matrix if mat_1 equals
mat_2. Otherwise ham returns the matrix distance between rows of the two matrices mat_1 and
mat_2 if this 2 matrices are different in input. Computing the Hamming distance stays possible
despite the presence of missing data by applying the following formula. Assuming that A and B are
2 matrices such as ncol(A) = ncol(B). The Hamming distance between the ith row of A and the
kth row of B equals:

ham(Ai, Bk) =

∑
j 1{Aij 6=Bkj}∑

j 1
×

(∑
j 1∑

j 1{!is.na(Aij)&!is.na(Bkj)}

)

where: i = 1, . . . , nrow(A) and k = 1, . . . , nrow(B); And the expression located to the right term
of the multiplication corresponds to a specific weigh applied in presence of NAs in Ai and/or Bk.

This specificity is not implemented in the cdist function and the Hamming distance can not be
computed using the dist function either.

The Hamming distance can not be calculated in only two situations:

1. If a row of A or B has only missing values (ie for each of the columns of A or B respectively).

2. The union of the indexes of the missing values in row i of A with the indexes of the missing
values in row j of B concerns the indexes of all considered columns.

Example: Assuming that ncol(A) = ncol(B) = 3, if Ai = (1,NA, 0) and Bj = (NA, 1,NA), for
each column, either the information in row i is missing in A, or the information is missing in B,
which induces: ham(Ai, Bk) = NA.

If mat_1 is a vector and mat_2 is a matrix (or data.frame) or vice versa, the length of mat_1 must
be equal to the number of columns of mat_2.

Value

A distance matrix

Author(s)

Gregory Guernec

<otrecod.pkg@gmail.com>

References

Roth R (2006). Introduction to Coding Theory. Cambridge University Press.

Examples

set.seed(3010)
sample_A <- sample(c(0, 1), 12, replace = TRUE)
set.seed(3007)
sample_B <- sample(c(0, 1), 15, replace = TRUE)
A <- matrix(sample_A, ncol = 3)
B <- matrix(sample_B, ncol = 3)

12 imput_cov

These 2 matrices have no missing values

Matrix of pairwise distances with A:
ham(A, A)

Matrix of distances between the rows of A and the rows of B:
ham(A, B)

If mat_1 is a vector of binary values:
ham(c(0, 1, 0), B)

Now by considering A_NA and B_NA two matrices built from A and B respectively,
where missing values have been manually added:
A_NA <- A
A_NA[3, 1] <- NA
A_NA[2, 2:3] <- rep(NA, 2)

B_NA <- B
B_NA[2, 2] <- NA

ham(A_NA, B_NA)

imput_cov imput_cov()

Description

This function performs imputations on incomplete covariates, whatever their types, using functions
from the package MICE (Van Buuren’s Multiple Imputation) or functions from the package miss-
MDA (Simple Imputation with Multivariate data analysis).

Usage

imput_cov(
dat1,
indcol = 1:ncol(dat1),
R_mice = 5,
meth = rep("pmm", ncol(dat1)),
missMDA = FALSE,
NB_COMP = 3,
seed_choice = sample(1:1e+06, 1)

)

Arguments

dat1 a data.frame containing the variables to be imputed and those involved in the
imputations

imput_cov 13

indcol a vector of integers. The corresponding column indexes (or numbers) corre-
sponding to the variables to be imputed and those involved in the imputations.

R_mice an integer. The number of imputed database generated with MICE method (5
by default).

meth a vector of characters which specifies the imputation method to be used for each
column in dat1. "pmm" for continuous covariates or by default option, "logreg"
for binary covariates, "polr" for ordinal covariates, "polyreg" for categorical co-
variates (no order), (cf mice for more details).

missMDA a boolean. If TRUE, missing values are imputed using the factoral analysis for
mixed data (imputeFAMD) from the missMDA package (2).

NB_COMP an integer corresponding to the number of components used in FAMD to predict
the missing entries (3 by default) when the missMDA option is TRUE.

seed_choice an integer used as argument by the set.seed() for offsetting the random number
generator (Random integer by default)

Details

By default, the function impute_cov handles missing information using multivariate imputation by
chained equations (MICE, see (1) for more details about the method) by integrating in its syntax the
function mice. All values of this last function are taken by default, excepted the required number of
multiple imputations, which can be fixed by using the argument R_mice, and the chosen imputation
method for each variable (meth argument), that corresponds to the argument defaultMethod of the
function mice. When multiple imputations are required (for MICE only), each missing information
is imputed by a consensus value: the average of the candidate values will be retained for numerical
variables, while the most frequent class will be remained for categorical variables (ordinal or not).
The output MICE_IMPS stores the imputed databases to allow users to build their own consensus
values by themselves and(or) to eventually assess the variabilities related to the proposed imputed
values if necessary. For this method, a random number generator must be fixed or sampled using
the argument seed_choice.

When the argument missMDA is equalled to TRUE, incomplete values are replaced (single imputation)
using a method based on dimensionality reduction called factor analysis for mixed data (FAMD)
using the the imputeFAMD function of the missMDA package (2). Using this approach, the function
imput_cov keeps all the default values integrated in the function imputeFAMD excepted the number
of dimensions used for FAMD which can be fixed by users (3 by default).

Value

A list of 3 or 4 objects (depending on the missMDA argument). The first three following objects if
missMDA = TRUE, otherwise 4 objects are returned:

RAW a data.frame corresponding to the raw database

IMPUTE a character indicating the type of selected imputation

DATA_IMPUTE a data.frame corresponding to the completed (consensus if multiple imputations)
database

MICE_IMPS only if missMDA = FALSE. A list object containing the R imputed databases
generated by MICE

14 indiv_grp_closest

Author(s)

Gregory Guernec

<otrecod.pkg@gmail.com>

References

1. van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1–67. urlhttps://www.jstatsoft.org/v45/i03/

2. Josse J, Husson F (2016). missMDA: A Package for Handling Missing Values in Multivariate
Data Analysis. Journal of Statistical Software, 70(1), 1–31. doi: 10.18637/jss.v070.i01

Examples

Imputation of all incomplete covariates in the table simu_data:
data(simu_data)

Here we keep the complete variable "Gender" in the imputation model.
Using MICE (REP = 3):
imput_mice <- imput_cov(simu_data,

indcol = 4:8, R_mice = 3,
meth = c("logreg", "polyreg", "polr", "logreg", "pmm")

)
summary(imput_mice)

Using FAMD (NB_COMP = 3):
imput_famd <- imput_cov(simu_data,

indcol = 4:8,
meth = c("logreg", "polyreg", "polr", "logreg", "pmm"),
missMDA = TRUE

)
summary(imput_famd)

indiv_grp_closest indiv_grp_closest()

Description

This function sequentially assigns individual predictions using a nearest neighbors procedure to
solve recoding problems of data fusion.

Usage

indiv_grp_closest(
proxim,
jointprobaA = NULL,
jointprobaB = NULL,

https://doi.org/10.18637/jss.v070.i01

indiv_grp_closest 15

percent_closest = 1,
which.DB = "BOTH"

)

Arguments

proxim a proxim_dist object or an object of similar structure

jointprobaA a matrix whose number of columns corresponds to the number of modalities of
the target variable Y in database A, and which number of rows corresponds to
the number of modalities of Z in database B. It gives an estimation of the joint
probability of (Y, Z) in A. The sum of cells of this matrix must be equal to 1

jointprobaB a matrix whose number of columns equals to the number of modalities of the
target variable Y in database A, and which number of rows corresponds to the
number of modalities of Z in database B. It gives an estimation of the joint
probability of (Y, Z) in B. The sum of cells of this matrix must be equal to 1

percent_closest

a value between 0 and 1 (by default) corresponding to the fixed percent closest
of individuals remained in the computation of the average distances

which.DB a character string (with quotes) that indicates which individual predictions need
to be computed: only the individual predictions of Y in B ("B"), only those of
Z in A ("A") or the both ("BOTH" by default)

Details

A. THE RECODING PROBLEM IN DATA FUSION

Assuming that Y and Z are two variables which refered to the same target population in two sep-
arate databases A and B respectively (no overlapping rows), so that Y and Z are never jointly
observed. Assuming also that A and B share a subset of common covariates X of any types (same
encodings in A and B) completed or not. Integrating these two databases often requires to solve
the recoding problem by creating an unique database where the missing information of Y and Z is
fully completed.

B. DESCRIPTION OF THE FUNCTION

The function indiv_grp_closest is an intermediate function used in the implementation of an
algorithm called OUTCOME (and its enrichment R-OUTCOME, see the reference (2) for more
details) dedicated to the solving of recoding problems in data fusion using Optimal Transporta-
tion theory. The model is implemented in the function OT_outcome which integrates the func-
tion indiv_grp_closest in its syntax as a possible second step of the algorithm. The function
indiv_grp_closest can also be used separately provided that the argument proxim receives an
output object of the function proxim_dist. This latter is available in the package and is so directly
usable beforehand.

The algorithms OUTCOME (and R-OUTCOME) are made of two independent parts. Assuming that the
objective consists in the prediction of Z in the database A:

• The first part of the algorithm solves the optimization problem by providing a solution called
γ that corresponds here to an estimation of the joint distribution (Y,Z) in A.

16 indiv_grp_closest

• From the first part, a nearest neighbor procedure is carried out as a second part to pro-
vide the individual predictions of Z in A: this procedure is implemented in the function
indiv_group_closest. In other words, this function sequentially assigns to each individ-
ual of A the modality of Z that is closest.

Obviously, this algorithm runs in the same way for the prediction of Y in the database B. The
function indiv_grp_closest integrates in its syntax the function avg_dist_closest. Therefore,
the related argument percent_closest is identical in the two functions. Thus, when computing
average distances between an individual i and a subset of individuals assigned to a same level of
Y or Z is required, user can decide if all individuals from the subset of interest can participate
to the computation (percent_closest=1) or only a fixed part p (<1) corresponding to the closest
neighbors of i (in this case percent_closest = p).

The arguments jointprobaA and jointprobaB correspond to the estimations of γ (sum of cells
must be equal to 1) in A and/or B respectively, according to the which.DB argument. For example,
assuming that nY1 individuals are assigned to the first modality of Y in A, the objective consists
in the individual predictions of Z in A. Then, if jointprobaA[1,2] = 0.10, the maximum number
of individuals that can be assigned to the second modality of Z in A, can not exceed 0.10 × nA.
If nY1

≤ 0.10 × nA then all individuals assigned to the first modality of Y will be assigned to
the second modality of Z. At the end of the process, each individual with still no affectation will
receive the same modality of Z as those of his nearest neighbor in B.

Value

A list of two vectors of numeric values:

YAtrans a vector corresponding to the individual predictions of Y (numeric form) in the
database B using the Optimal Transportation algorithm

ZBtrans a vector corresponding to the individual predictions of Z (numeric form) in the
database A using the Optimal Transportation algorithm

Author(s)

Gregory Guernec, Valerie Gares, Jeremy Omer

<otrecod.pkg@gmail.com>

References

1. Gares V, Dimeglio C, Guernec G, Fantin F, Lepage B, Korosok MR, savy N (2019). On the
use of optimal transportation theory to recode variables and application to database merging.
The International Journal of Biostatistics. Volume 16, Issue 1, 20180106, eISSN 1557-4679.
doi:10.1515/ijb-2018-0106

2. Gares V, Omer J (2020) Regularized optimal transport of covariates and outcomes in data re-
coding. Journal of the American Statistical Association. doi: 10.1080/01621459.2020.1775615

See Also

proxim_dist,avg_dist_closest, ,OT_outcome

https://doi.org/10.1080/01621459.2020.1775615

indiv_grp_closest 17

Examples

data(simu_data)

Example with the Manhattan distance

man1 <- transfo_dist(simu_data,
quanti = c(3, 8), nominal = c(1, 4:5, 7),
ordinal = c(2, 6), logic = NULL, prep_choice = "M"

)
mat_man1 <- proxim_dist(man1, norm = "M")

Y(Yb1) and Z(Yb2) are a same information encoded in 2 different forms:
(3 levels for Y and 5 levels for Z)
... Stored in two distinct databases, A and B, respectively
The marginal distribution of Y in B is unknown,
as the marginal distribution of Z in A ...

Empirical distribution of Y in database A:
freqY <- prop.table(table(man1$Y))
freqY

Empirical distribution of Z in database B
freqZ <- prop.table(table(man1$Z))
freqZ

By supposing that the following matrix called transport symbolizes
an estimation of the joint distribution L(Y,Z) ...
Note that, in reality this distribution is UNKNOWN and is
estimated in the OT function by resolving an optimisation problem.

transport1 <- matrix(c(0.3625, 0, 0, 0.07083333, 0.05666667,
0, 0, 0.0875, 0, 0, 0.1075, 0,
0, 0.17166667, 0.1433333),

ncol = 5, byrow = FALSE)

... So that the marginal distributions of this object corresponds to freqY and freqZ:
apply(transport1, 1, sum) # = freqY
apply(transport1, 2, sum) # = freqZ

The affectation of the predicted values of Y in database B and Z in database A
are stored in the following object:

pred_man1 <- indiv_grp_closest(mat_man1,
jointprobaA = transport1, jointprobaB = transport1,
percent_closest = 0.90

)
summary(pred_man1)

For the prediction of Z in A only, add the corresponding argument:
pred_man1_A <- indiv_grp_closest(mat_man1,

jointprobaA = transport1, jointprobaB = transport1,

18 indiv_grp_optimal

percent_closest = 0.90, which.DB = "A"
)

indiv_grp_optimal indiv_grp_optimal()

Description

This function assigns individual predictions to the incomplete information of two integrated data-
sources by solving a linear optimization problem.

Usage

indiv_grp_optimal(
proxim,
jointprobaA,
jointprobaB,
percent_closest = 1,
solvr = "glpk",
which.DB = "BOTH"

)

Arguments

proxim a proxim_dist object or an object of similar structure

jointprobaA a matrix whose number of columns is equal to the number of modalities of
the target variable Y in database A, and whose number of rows is equal to the
number of modalities of Z in database B. It gives an estimation of the joint
probability (Y,Z) in the database A. The sum of cells of this matrix must be
equal to 1.

jointprobaB a matrix whose number of columns is equal to the number of modalities of
the target variable Y in database A, and whose number of rows is equal to the
number of modalities of Z in database B. It gives an estimation of the joint
probability (Y,Z) in the database B. The sum of cells of this matrix must be
equal to 1.

percent_closest

a value between 0 and 1 (by default) corresponding to the fixed percent closest
of individuals used in the computation of the average distances

solvr a character string that specifies the type of method selected to solve the opti-
mization algorithms. The default solver is "glpk".

which.DB a character string that indicates which individual predictions are computed: only
the individual predictions of Y in B ("B"), only those of Z in A ("A") or the both
("BOTH" by default).

indiv_grp_optimal 19

Details

A. THE RECODING PROBLEM IN DATA FUSION

Assuming that Y and Z are two target variables which refered to the same target population in two
separate databases A and B respectively (no overlapping rows), so that Y and Z are never jointly
observed. Assuming also that A and B share a subset of common covariates X of any types (same
encodings in A and B) completed or not. Merging these two databases often requires to solve a
recoding problem by creating an unique database where the missing information of Y and Z is
fully completed.

B. DESCRIPTION OF THE FUNCTION

The function indiv_grp_optimal is an intermediate function used in the implementation of an
algorithm called OUTCOME (and its enrichment R-OUTCOME (2)) dedicated to the solving of recoding
problems in data fusion using Optimal Transportation theory. The model is implemented in the
function OT_outcome which integrates the function indiv_grp_optimal in its syntax as a possible
second step of the algorithm. The function indiv_grp_optimal can nevertheless be used separately
providing that the argument proxim receives an output object of the function proxim_dist. This
latter is available in the package and is so directly usable beforehand.

The function indiv_grp_optimal constitutes an alternative method to the nearest neighbor proce-
dure implemented in the function indiv_grp_closest. As for the function indiv_grp_closest,
assuming that the objective consists in the prediction of Z in the database A, the first step of the
algorithm related to OUTCOME provides an estimate of γ, the solution of the optimization problem,
which can be seen, in this case as an estimation of the joint distribution (Y,Z) in A. Rather than us-
ing a nearest neighbor approach to provide individual predictions, the function indiv_grp_optimal
solves an optimization problem using the simplex algorithm which searches for the individual pre-
dictions of Z that minimize the computed total distance satisfying the joint probability distribution
estimated in the first part. More details about the theory related to the solving of this optimization
problem is described in the section 5.3 of (2).

Obviously, this algorithm runs in the same way for the prediction of Y in the database B. The func-
tion indiv_grp_optimal integrates in its syntax the function avg_dist_closest and the related
argument percent_closest is identical in the two functions. Thus, when computing average dis-
tances between an individual i and a subset of individuals assigned to a same level of Y or Z is
required, user can decide if all individuals from the subset of interest can participate to the compu-
tation (percent_closest = 1) or only a fixed part p (<1) corresponding to the closest neighbors of
i (in this case percent_closest = p).

The arguments jointprobaA and jointprobaB can be seen as estimations of γ (sum of cells must
be equal to 1) that correspond to estimations of the joint distributions of (Y, Z) in A and B respec-
tively.

The argument solvr permits user to choose the solver of the optimization algorithm. The default
solver is "glpk" that corresponds to the GNU Linear Programming Kit (see (3) for more details). The
solver "clp" (see (4)) for Coin-or Linear Programming, convenient in linear and quadratic situations,
is also directly integrated in the function. Moreover, the function actually uses the R optimization
infrastructure of the package ROI which offers a wide choice of solver to users by easily loading
the associated plugins of ROI (see (5)).

Value

A list of two vectors of numeric values:

20 indiv_grp_optimal

YAtrans a vector corresponding to the predicted values of Y in database B (numeric
form) according to the which.DB argument

ZBtrans a vector corresponding to the predicted values of Z in database A (numeric
form) according to the which.DB argument

Author(s)

Gregory Guernec, Valerie Gares, Jeremy Omer

<otrecod.pkg@gmail.com>

References

1. Gares V, Dimeglio C, Guernec G, Fantin F, Lepage B, Korosok MR, savy N (2019). On the
use of optimal transportation theory to recode variables and application to database merging.
The International Journal of Biostatistics. Volume 16, Issue 1, 20180106, eISSN 1557-4679.
doi:10.1515/ijb-2018-0106

2. Gares V, Omer J (2020) Regularized optimal transport of covariates and outcomes in data re-
coding. Journal of the American Statistical Association. doi: 10.1080/01621459.2020.1775615

3. Makhorin A (2011). GNU Linear Programming Kit Reference Manual Version 4.47.http:
//www.gnu.org/software/glpk/

4. Forrest J, de la Nuez D, Lougee-Heimer R (2004). Clp User Guide. https://www.coin-or.
org/Clp/userguide/index.html

5. Theussl S, Schwendinger F, Hornik K (2020). ROI: An Extensible R Optimization Infrastruc-
ture.Journal of Statistical Software,94(15), 1-64. doi: 10.18637/jss.v094.i15

See Also

proxim_dist, avg_dist_closest, indiv_grp_closest

Examples

Example using The Euclidean distance on a complete database
For this example we keep only 200 rows:

data(tab_test)
tab_test2 <- tab_test[c(1:80, 5001:5080),]
dim(tab_test2)

Adding NAs in Y1 and Y2
tab_test2[tab_test2$ident == 2, 2] <- NA
tab_test2[tab_test2$ident == 1, 3] <- NA

Because all covariates are ordered in numeric form,
the transfo_dist function is not required here

mat_testm <- proxim_dist(tab_test2, norm = "M")

Y(Y1) and Z(Y2) are a same variable encoded in 2 different forms:

https://doi.org/10.1080/01621459.2020.1775615
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
https://www.coin-or.org/Clp/userguide/index.html
https://www.coin-or.org/Clp/userguide/index.html
https://doi.org/10.18637/jss.v094.i15

indiv_grp_optimal 21

4 levels for Y1 and 3 levels for Y2
... Stored in two distinct databases, A and B, respectively
The marginal distribution of Y in B is unknown,
as the marginal distribution of Z in A ...

Assuming that the following matrix called transport symbolizes
an estimation of the joint distribution L(Y,Z) ...
Note that, in reality this distribution is UNKNOWN and is
estimated in the OT function by resolving the optimization problem.

By supposing:

val_trans <- c(0.275, 0.115, 0, 0, 0, 0.085, 0.165, 0, 0, 0, 0.095, 0.265)
mat_trans <- matrix(val_trans, ncol = 3, byrow = FALSE)

Getting the individual predictions of Z in A (only)
by computing average distances on 90% of the nearest neighbors of
each modality of Z in B
predopt_A <- indiv_grp_optimal(mat_testm,

jointprobaA = mat_trans,
jointprobaB = mat_trans, percent_closest = 0.90,
which.DB = "A"

)

Example 2 using The Manhattan distance with incomplete covariates
data(simu_data)

man1 <- transfo_dist(simu_data,
quanti = c(3, 8), nominal = c(1, 4:5, 7),
ordinal = c(2, 6), logic = NULL, prep_choice = "M"

)
mat_man1 <- proxim_dist(man1, norm = "M")

Y and Z are a same variable encoded in 2 different forms:
(3 levels for Y and 5 levels for Z)
... Stored in two distinct databases, A and B, respectively
The marginal distribution of Y in B is unknown,
as the marginal distribution of Z in A ...

By supposing that the following matrix called transport symbolizes
an estimation of the joint distribution L(Y,Z) ...
Note that, in reality this distribution is UNKNOWN and is
estimated in the OT function by resolving an optimisation problem.

mat_trans2 <- matrix(c(0.3625, 0, 0, 0.07083333, 0.05666667,
0, 0, 0.0875, 0, 0, 0.1075, 0,
0, 0.17166667, 0.1433333),

ncol = 5, byrow = FALSE)

22 merge_dbs

The predicted values of Y in database B and Z in
database A are stored in the following object:

predopt2 <- indiv_grp_optimal(mat_man1,
jointprobaA = mat_trans2,
jointprobaB = mat_trans2,
percent_closest = 0.90

)
summary(predopt2)

merge_dbs merge_dbs()

Description

Harmonization and merging before data fusion of two databases with specific outcome variables
and shared covariates.

Usage

merge_dbs(
DB1,
DB2,
row_ID1 = NULL,
row_ID2 = NULL,
NAME_Y,
NAME_Z,
order_levels_Y = levels(DB1[, NAME_Y]),
order_levels_Z = levels(DB2[, NAME_Z]),
ordinal_DB1 = NULL,
ordinal_DB2 = NULL,
impute = "NO",
R_MICE = 5,
NCP_FAMD = 3,
seed_choice = sample(1:1e+06, 1)

)

Arguments

DB1 a data.frame corresponding to the 1st database to merge (top database)

DB2 a data.frame corresponding to the 2nd database to merge (bottom database)

row_ID1 the column index of the row identifier of DB1 if it exists (no identifier by default)

row_ID2 the column index of the row identifier of DB2 if it exists (no identifier by default)

NAME_Y the name of the outcome (with quotes) in its specific scale/encoding from the
1st database (DB1)

merge_dbs 23

NAME_Z the name of the outcome (with quotes) in its specific scale/encoding from the
2nd database (DB2)

order_levels_Y the levels of Y stored in a vector and sorted in ascending order in the case of
ordered factors. This option permits to reorder the levels in the 1st database
(DB1) if necessary.

order_levels_Z the levels of Z stored in a vector and sorted in ascending order in the case of
ordered factors. This option permits to reorder the levels in the 2nd database
(DB2) if necessary.

ordinal_DB1 a vector of column indexes corresponding to ordinal variables in the 1st database
(no ordinal variable by default)

ordinal_DB2 a vector of column indexes corresponding to ordinal variables in the 2nd database
(no ordinal variable by default)

impute a character equals to "NO" when missing data on covariates are kept (Default
option), "CC" for Complete Case by keeping only covariates with no missing
information , "MICE" for MICE multiple imputation approach, "FAMD" for
single imputation approach using Factorial Analysis for Mixed Data

R_MICE the chosen number of multiple imputations required for the MICE approach (5
by default)

NCP_FAMD an integer corresponding to the number of components used to predict missing
values in FAMD imputation (3 by default)

seed_choice an integer used as argument by the set.seed() for offsetting the random number
generator (Random integer by default, only useful with MICE)

Details

Assuming that DB1 and DB2 are two databases (two separate data.frames with no overlapping
rows) to be merged vertically before data fusion, the function merge_dbs performs this merging
and checks the harmonization of the shared variables. Firslty, the two databases declared as input to
the function (via the argument DB1 and DB2) must have the same specific structure. Each database
must contain a target variable (whose label must be filled in the argument Y for DB1 and in Z for
DB2 respectively, so that the final synthetic database in output will contain an incomplete variable Y
whose corresponding values will be missing in DB2 and another incomplete target Z whose values
will be missing in DB1), a subset of shared covariates (by example, the best predictors of Y in
DB1, and Z in DB2). Each database can have a row identifier whose label must be assigned in
the argument row_ID1 for DB1 and row_ID2 for DB2. Nevertheless, by default DB1 and DB2
are supposed with no row identifiers. The merging keeps unchanged the order of rows in the two
databases provided that Y and Z have no missing values. By building, the first declared database
(in the argument DB1) will be placed automatically above the second one (declared in the argument
DB2) in the final database.

Firstly, by default, a variable with the same name in the two databases is abusively considered as
shared. This condition is obviously insufficient to be kept in the final subset of shared variables,
and the function merge_dbs so performs checks before merging described below.

A. Discrepancies between shared variables

• Shared variables with discrepancies of types between the two databases (for example, a vari-
able with a common name in the two databases but stored as numeric in DB1, and stored as

24 merge_dbs

character in DB2) will be removed from the merging and the variable name will be saved in
output (REMOVE1).

• Shared factors with discrepancies of levels (or number of levels) will be also removed from
the merging and the variable name will be saved in output (REMOVE2).

• covariates whose names are specific to each database will be also deleted from the merging.

• If some important predictors have been improperly excluded from the merging due to the
above-mentioned checks, it is possible for user to transform these variables a posteriori, and
re-run the function.

B. Rules for the two outcomes (target variables)

The types of Y and Z must be suitable:

• Categorical (ordered or not) factors are allowed.

• Numeric and discrete outcomes with a finite number of values are allowed but will be auto-
matically converted as ordered factors using the function transfo_target integrated in the
function merge_dbs.

C. The function merge_dbs handles incomplete information of shared variables, by respecting the
following rules:

• If Y or Z have missing values in DB1 or DB2, corresponding rows are excluded from the
database before merging. Moreover, in the case of incomplete outcomes, if A and B have row
identifiers, the corresponding identifiers are removed and these latters are stored in the objects
DB1_ID and DB2_ID of the output.

• Before overlay, the function deals with incomplete covariates according to the argument impute.
Users can decide to work with complete case only ("CC"), to keep ("NO") or impute incom-
plete information ("MICE","FAMD").

• The function imput_cov, integrated in the syntax of merge_dbs deals with imputations. Two
approaches are actually available: the multivariate imputation by chained equation approach
(MICE, see (3) for more details about the approach or the corresponding package mice), and
an imputation approach from the package missMDA that uses a dimensionality reduction
method (here a factor analysis for mixed data called FAMD (4)), to provide single imputations.
If multiple imputation is required (impute = "MICE"), the default imputation methods are
applied according to the type of the variables. The average of the plausible values will be kept
for a continuous variable, while the most frequent candidate will be kept as a consensus value
for a categorical variable or factor (ordinal or not).

As a finally step, the function checks that all values related to Y in B are missing and inversely for
Z in A.

Value

A list containing 12 elements (13 when impute equals "MICE"):

DB_READY the database matched from the two initial databases with common covariates
and imputed or not according to the impute option

ID1_drop the row numbers or row identifiers excluded of the data merging because of the
presence of missing values in the target variable of DB1. NULL otherwise

merge_dbs 25

ID2_drop the row numbers or row identifiers excluded of the data merging because of the
presence of missing values in the target variable of DB2. NULL otherwise

Y_LEVELS the remaining levels of the target variable Y in the DB1

Z_LEVELS the remaining Levels of the target variable Z in the DB2

REMOVE1 the labels of the deleted covariates because of type incompatibilies of type from
DB1 to DB2

REMOVE2 the removed factor(s) because of levels incompatibilities from DB1 to DB2

REMAINING_VAR labels of the remained covariates for data fusion

IMPUTE_TYPE a character with quotes that specify the method eventually chosen to handle
missing data in covariates

MICE_DETAILS a list containing the details of the imputed datasets using MICE when this option
is chosen. Raw and imputed databases imputed for DB1 and DB2 according to
the number of multiple imputation selected (Only if impute = "MICE")

DB1_raw a data.frame corresponding to DB1 after merging

DB2_raw a data.frame corresponding to DB2 after merging

SEED an integer used as argument by the set.seed function for offsetting the random
number generator (random selection by default)

Author(s)

Gregory Guernec

<otrecod.pkg@gmail.com>

References

1. Gares V, Dimeglio C, Guernec G, Fantin F, Lepage B, Korosok MR, savy N (2019). On the
use of optimal transportation theory to recode variables and application to database merging.
The International Journal of Biostatistics. Volume 16, Issue 1, 20180106, eISSN 1557-4679.
doi:10.1515/ijb-2018-0106

2. Gares V, Omer J (2020) Regularized optimal transport of covariates and outcomes in data re-
coding. Journal of the American Statistical Association. doi: 10.1080/01621459.2020.1775615

3. van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained
Equations in R. Journal of Statistical Software, 45(3), 1–67. urlhttps://www.jstatsoft.org/v45/i03/

4. Josse J, Husson F (2016). missMDA: A Package for Handling Missing Values in Multivariate
Data Analysis. Journal of Statistical Software, 70(1), 1–31. doi: 10.18637/jss.v070.i01

See Also

imput_cov, transfo_target, select_pred

https://doi.org/10.1080/01621459.2020.1775615
https://doi.org/10.18637/jss.v070.i01

26 merge_dbs

Examples

Assuming two distinct databases from simu_data: data_A and data_B
Some transformations will be made beforehand on variables to generate
heterogeneities between the two bases.
data(simu_data)
data_A <- simu_data[simu_data$DB == "A", c(2, 4:8)]
data_B <- simu_data[simu_data$DB == "B", c(3, 4:8)]

For the example, a covariate is added (Weight) only in data_A
data_A$Weight <- rnorm(300, 70, 5)

Be careful: the target variables must be in factor (or ordered) in the 2 databases
Because it is not the case for Yb2 in data_B, the function will convert it.
data_B$Yb2 <- as.factor(data_B$Yb2)

Moreover, the Dosage covariate is stored in 3 classes in data_B (instead of 4 classes in data_B)
to make the encoding of this covariate specific to each database.
data_B$Dosage <- as.character(data_B$Dosage)
data_B$Dosage <- as.factor(ifelse(data_B$Dosage %in% c("Dos 1", "Dos 2"), "D1",

ifelse(data_B$Dosage == "Dos 3", "D3", "D4")
))

For more diversity, this covariate iis placed at the last column of the data_B
data_B <- data_B[, c(1:3, 5, 6, 4)]

Ex 1: The two databases are merged and incomplete covariates are imputed using MICE
merged_ex1 <- merge_dbs(data_A, data_B,

NAME_Y = "Yb1", NAME_Z = "Yb2",
ordinal_DB1 = c(1, 4), ordinal_DB2 = c(1, 6),
impute = "MICE", R_MICE = 2, seed_choice = 3011)

summary(merged_ex1$DB_READY)

Ex 2: The two databases are merged and missing values are kept
merged_ex2 <- merge_dbs(data_A, data_B,

NAME_Y = "Yb1", NAME_Z = "Yb2",
ordinal_DB1 = c(1, 4), ordinal_DB2 = c(1, 6),
impute = "NO", seed_choice = 3011

)

Ex 3: The two databases are merged by only keeping the complete cases
merged_ex3 <- merge_dbs(data_A, data_B,

NAME_Y = "Yb1", NAME_Z = "Yb2",
ordinal_DB1 = c(1, 4), ordinal_DB2 = c(1, 6),
impute = "CC", seed_choice = 3011

)

Ex 4: The two databases are merged and incomplete covariates are imputed using FAMD
merged_ex4 <- merge_dbs(data_A, data_B,

NAME_Y = "Yb1", NAME_Z = "Yb2",

ncds_14 27

ordinal_DB1 = c(1, 4), ordinal_DB2 = c(1, 6),
impute = "FAMD", NCP_FAMD = 4, seed_choice = 2096

)

Conclusion:
The data fusion is successful in each situation.
The Dosage and Weight covariates have been normally excluded from the fusion.
The covariates have been imputed when required.

ncds_14 National Child Development Study: a sample of the first four waves of
data collection

Description

This database is a sample of the first four waves of data collection of the National Child Develop-
ment Study (NCDS) started in 1958 (https://cls.ucl.ac.uk/cls-studies/1958-national-child-development-study/).
The NCDS project is a continuing survey which follows the lives of over 17,000 people born in Eng-
land, Scotland and Wales in a same week of the year 1958.

Usage

ncds_14

Format

A data.frame with 5,476 participants (rows) and 6 variables

ncdsid the anonymised ncds identifier

GO90 the Goldthorp social class 90 scale coded as a 12-levels factor: higher-grade professionals
10, lower-grade professionals 20, routine non-manual employees with higher grade (adminis-
tration, commerce) 31, routine non-manual employees with lower grade (sales and services)
32, small proprietors with employees 41, small proprietors without employees 42, farmers,
small holders and workers in primary production 43, lower-grade technicians 50, skilled man-
ual workers 60, semi-skilled and unskilled manual workers 71, other workers in primary pro-
duction 72, and 0 when the scale was not applicable to the participant. This variable has 806
NAs.

health the health status of the participant stored in a 4 ordered levels factor: 1 for excellent, 2 for
good, 3 for fair, 4 for poor. This variable has 2 NAs.

employ the employment status at inclusion stored in a 7-levels factor: 1 for unemployed status, 2
for govt sheme, 3 for full-time education, 4 for housework or childcare, 5 for sick or handi-
capped, 6 for other, 7 if employed between 16 and 33. This variable has 58 NAs.

gender the gender of the participant stored in a 2-levels factor: 1 for male, 2 for female

study a 2-level factor equals to 1 for participant with completed graduate studies or 2 otherwise

https://cls.ucl.ac.uk/cls-studies/1958-national-child-development-study/

28 ncds_5

Details

The ncds identifier have been voluntarily anonymized to allow their availability for the package.

This sample has 5,476 participants included in the study between the first and fourth wave of data
collection.

Source

INSERM - This database is a sample of the National Child Development Study

ncds_5 National Child Development Study: a sample of the fifth wave of data
collection

Description

This database is a sample of the fifth wave of data collection of the National Child Development
Study (NCDS) started in 1958 (https://cls.ucl.ac.uk/cls-studies/1958-national-child-development-study/).
The NCDS project is a continuing survey which follows the lives of over 17,000 people born in Eng-
land, Scotland and Wales in a same week of the year 1958.

Usage

ncds_5

Format

A data.frame with 365 participants (rows) and 6 variables

ncdsid the anonymised ncds identifier

gender the gender of the participant stored in a 2-levels factor: 1 for male, 2 for female

RG91 the RG social class 91 scale coded as a 7-levels factor: 10 for professional educations, 20 for
managerial and technical occupations, 31 for skilled non-manual occupations, 32 for skilled
manual occupations, 40 for party-skilled occupations, 50 for unskilled occupations 50, and 0
when the scale was not applicable to the participant. This variable is complete.

health the health status of the participant stored in a 4 ordered levels factor: 1 for excellent, 2 for
good, 3 for fair, 4 for poor. This variable has 2 NAs.

employ the employment status at inclusion stored in a 7-levels factor: 1 for unemployed status, 2
for govt sheme, 3 for full-time education, 4 for housework or childcare, 5 for sick or handi-
capped, 6 for other, 7 if employed between 16 and 33. This variable has 58 NAs.

study a 2-level factor equals to 1 for participant with completed graduate studies or 2 otherwise

Details

The ncds identifier have been voluntarily anonymized to allow their availability for the package.

This sample has 365 participants included in the study during the 5th waves of data collection.

https://cls.ucl.ac.uk/cls-studies/1958-national-child-development-study/

OT_joint 29

Source

INSERM - This database is a sample of the National Child Development Study

OT_joint OT_joint()

Description

The function OT_joint integrates two algorithms called (JOINT) and (R-JOINT) dedicated to the
solving of recoding problems in data fusion using optimal transportation of the joint distribution of
outcomes and covariates.

Usage

OT_joint(
datab,
index_DB_Y_Z = 1:3,
nominal = NULL,
ordinal = NULL,
logic = NULL,
convert.num = NULL,
convert.class = NULL,
dist.choice = "E",
percent.knn = 1,
maxrelax = 0,
lambda.reg = 0,
prox.X = 0.3,
solvR = "glpk",
which.DB = "BOTH"

)

Arguments

datab a data.frame made up of two overlayed databases with at least four columns
sorted in a random order. One column must be a column dedicated to the identi-
fication of the two databases ranked in ascending order (For example: 1 for the
top database and 2 for the database from below, or more logically here A and B
...But not B and A!). One column (Y here but other names are allowed) must
correspond to the target variable related to the information of interest to merge
with its specific encoding in the database A (corresponding encoding should be
missing in the database B). In the same way, one column (Z here) corresponds
to the second target variable with its specific encoding in the database B (cor-
responding encoding should be missing in the database A). Finally, the input
database must have at least one shared covariate with same encoding in A and
B. Please notice that, if your data.frame has only one shared covariate (four
columns) with missing values (because no imputation is desired) then a warning
will appear and the algorithm will only run with complete cases.

30 OT_joint

index_DB_Y_Z a vector of three indexes of variables. The first index must correspond to the
index of the databases identifier column. The second index corresponds to the
index of the target variable in the first database (A) while the third index corre-
sponds to the column index related to the target variable in the second database
(B).

nominal a vector of column indexes of all the nominal (not ordered) variables (database
identifier and target variables included if it is the case for them).

ordinal a vector of column indexes of all the ordinal variables (database identifier and
target variables included if it is the case for them).

logic a vector of column indexes of all the boolean variables of the data.frame.

convert.num indexes of the continuous (quantitative) variables. They will be automatically
converted in ordered factors. By default, no continuous variables is assumed in
the database.

convert.class a vector indicating for each continuous variable to convert, the corresponding
desired number of levels. If the length of the argument convert_num exceeds 1
while the length of convert_class equals 1 (only one integer), each discretiza-
tion will count the same number of levels (quantiles).

dist.choice a character string (with quotes) corresponding to the distance function chosen
between: the euclidean distance ("E", by default), the Manhattan distance ("M"),
the Gower distance ("G"), and the Hamming distance ("H") for binary covariates
only.

percent.knn the ratio of closest neighbors involved in the computations of the cost matrices.
1 is the default value that includes all rows in the computation.

maxrelax the maximum percentage of deviation from expected probability masses. It must
be equal to 0 (default value) for the JOINT algorithm, and equal to a strictly
positive value for the R-JOINT algorithm.

lambda.reg a coefficient measuring the importance of the regularization term. It corresponds
to the R-JOINT algorithm for a value other than 0 (default value).

prox.X a probability (betwen 0 and 1) used to calculate the distance threshold below
which two covariates’ profiles are supposed as neighbors. If prox.X = 1, all
profiles are considered as neighbors.

solvR a character string that specifies the type of method selected to solve the opti-
mization algorithms. The default solver is "glpk".

which.DB a character string indicating the database to complete ("BOTH" by default, for
the prediction of Y and Z in the two databases), "A" only for the imputation of
Z in A, "B" only for the imputation of Y in B.

Details

A. THE RECODING PROBLEM IN DATA FUSION

Assuming that Y and Z are two target variables which refered to the same target population in two
separate databases A and B respectively (no overlapping rows), so that Y and Z are never jointly
observed. Assuming also that A and B share a subset of common covariates X of any types (same
encodings in A and B) completed or not. Merging these two databases often requires to solve a

OT_joint 31

recoding problem by creating an unique database where the missing information of Y and Z is
fully completed.

B. INFORMATIONS ABOUT THE ALGORITHM

As with the function OT_outcome, the function OT_joint provides a solution to the recoding prob-
lem by proposing an application of optimal transportation which aims is to search for a bijective
mapping between the joint distributions of (Y,X) and (Z,X) in A and B (see (2) for more details).
The principle of the algorithm is also based on the resolution of an optimization problem, which pro-
vides a solution γ (as called in (1) and (2)), estimate of the joint distribution of (X,Y, Z) according
to the database to complete (see the argument which.DB for the choice of the database). While the
algorithms OUTCOME and R_OUTCOME integrated in the function OT_outcome require post-treatment
steps to provide individual predictions, the algorithm JOINT directly uses estimations of the con-
ditional distributions (Y |Z,X) in B and (Z|Y,X) in A to predict the corresponding incomplete
individuals informations of Y and/or Z respectively. This algorithm supposes that the conditional
distribution (Y |X) must be identical in A and B. Respectively, (Z|X) is supposed identical in A
and B. Estimations a posteriori of conditional probabilities P [Y |X,Z] and P [Z|X,Y] are available
for each profiles of covariates in output (See the objects estimatorYB and estimatorZA). Esti-
mations of γ are also available according to the chosen transport distributions (See the arguments
gamma_A and gamma_B).

The algorithm R-JOINT gathers enrichments of the algorithm JOINT and is also available via the
function OT_joint. It allows users to add a relaxation term in the algorithm to relax distributional
assumptions (maxrelax>0), and (or) add also a positive regularization term (lamdba.reg>0) ex-
pressing that the transportation map does not vary to quickly with respect of covariates X . Is is
suggested to users to calibrate these two parameters a posteriori by studying the stability of the
individual predictions in output.

C. EXPECTED STRUCTURE FOR THE INPUT DATABASE

The input database is a data.frame that must satisfy a specific form:

• Two overlayed databases containing a common column of databases identifiers (A and B, 1 or
2, by examples, encoded in numeric or factor form)

• A column corresponding to the target variable with its specific encoding in A (For example a
factor Y encoded in nY levels, ordered or not, with NAs in the corresponding rows of B)

• A column corresponding to another target outcome summarizing the same latent information
with its specific encoding in B (By example a factor Z with nZ levels, with NAs in rows of A)

• The order of the variables in the database have no importance but the column indexes related
to the three columns previously described (ie ID, Y and Z) must be rigorously specified in the
argument index_DB_Y_Z.

• A set of shared common categorical covariates (at least one but more is recommended) with
or without missing values (provided that the number of covariates exceeds 1) is required. On
the contrary to the function OT_outcome, please notice, that the function OT_joint does not
accept continuous covariates therefore these latters will have to be categorized beforehand or
using the provided input process (see convert.num).

The function merge_dbs is available in this package to assist user in the preparation of their
databases.

Remarks about the target variables:

32 OT_joint

• A target variable can be of categorical type, but also discrete, stored in factor, ordered or not.
Nevertheless, notice that, if the variable is stored in numeric it will be automatically converted
in ordered factors.

• If a target variable is incomplete, the corresponding rows will be automatically dropped during
the execution of the function.

The type of each variables (including ID, Y and Z) of the database must be rigorously specified,
in one of the four arguments quanti, nominal, ordinal and logic.

D. TRANSFORMATIONS OF CONTINUOUS COVARIATES

Continuous shared variables (predictors) with infinite numbers of values have to be categorized be-
fore being introduced in the function. To assist users in this task, the function OT_joint integrates
in its syntax a process dedicated to the categorization of continuous covariates. For this, it is neces-
sary to rigorously fill in the arguments quanti and convert.class. The first one informs about the
column indexes of the continuous variables to be transformed in ordered factor while the second one
specifies the corresponding number of desired balanced levels (for unbalanced levels, users must
do transformations by themselves). Therefore convert.num and convert.class must be vectors
of same length, but if the length of quanti exceeds 1, while the length of convert.class is 1,
then, by default, all the covariates to convert will have the same number of classes (transformation
by quantiles), that corresponds to the value specified in the argument convert.class. Notice that
only covariates can be transformed (not target variables) and that any incomplete information must
have been taken into account beforehand (via the dedicated functions merge_dbs or imput_cov
for examples). Moreover, all the indexes informed in the argument convert.num must also be in-
formed in the argument quanti. Finally, it is recommended to declare all discrete covariates as
ordinal factors using the argument ordinal.

E. INFORMATIONS ABOUT DISTANCE FUNCTIONS AND RELATED PARAMETERS

Each individual (or row) of a given database is here characterized by a vector of covariates, so the
distance between two individuals or groups of individuals depends on similarities between covari-
ates according to the distance function chosen by user (via the argument dist.choice). Actually
four distance functions are implemented in OT_joint to take into account the most frequently en-
countered situation (see (3)):

• the Manhattan distance ("M")

• the Euclidean distance ("E")

• the Gower distance for mixed data (see (4): "G")

• the Hamming distance for binary data ("H")

Finally, two profiles of covariates P1 (n1 individuals) and P2 (n2 individuals) will be considered
as neighbors if dist(P1, P2) < prox.X × max(dist(Pi, Pj)) where prox.X must be fixed by
user (i = 1, . . . , n1 and j = 1, . . . , n2). This choice is used in the computation of the JOINT and
R_JOINT algorithms. The prox.X argument influences a lot the running time of the algorithm. The
greater, the more the value will be close to 1, the more the convergence of the algorithm will be
difficult or even impossible.

Each individual i from A or B is here considered as a neighbor of only one profile of covariates Pj .

F. INFORMATIONS ABOUT THE SOLVER

The argument solvR permits user to choose the solver of the optimization algorithm. The default
solver is "glpk" that corresponds to the GNU Linear Programming Kit (see (5) for more details).

OT_joint 33

Moreover, the function actually uses the R optimization infrastructure of the package ROI which
offers a wide choice of solver to users by easily loading the associated plugins of ROI (see (6)).

For more details about the algorithms integrated in OT_joint, please consult (2).

Value

A "otres" class object of 9 elements:

time_exe running time of the function

gamma_A estimate of γ for the completion of A. A matrix that corresponds to the joint
distribution of (Y,Z,X) in A

gamma_B estimate of γ for the completion of B. A matrix that corresponds to the joint
distribution of (Y,Z,X) in B

profile a data.frame that gives all details about the remaining P profiles of covariates.
These informations can be linked to the estimatorZA and the estimatorYB
objects for a better interpretation of the results.

res_prox a proxim_dist object

estimatorZA an array that corresponds to estimates of the probability distribution of Z condi-
tional to X and Y in database A. The number of rows of each table corresponds
to the total number of profiles of covariates. The first dimension of each table
(rownames) correspond to the profiles of covariates sorted by order of appear-
ance in the merged database. The second dimension of the array (columns of
the tables) corresponds to the levels of Y while the third element corresponds to
the levels of Z.

estimatorYB an array that corresponds to estimates of the probability distribution of Y condi-
tional to X and Z in database B. The number of rows of each table corresponds
to the total number of profiles of covariates. The first dimension of each table
(rownames) correspond to the profiles of covariates sorted by order of appear-
ance in the merged database. The second dimension of the array (columns of
the tables) corresponds to the levels of Z while the third element corresponds to
the levels of Y .

DATA1_OT the database A with the individual predictions of Z using an optimal transporta-
tion algorithm (JOINT) or R-JOINT

DATA2_OT the database B with the individual predictions of Y using an optimal transporta-
tion algorithm (JOINT) or R-JOINT

Author(s)

Gregory Guernec, Valerie Gares, Jeremy Omer

<otrecod.pkg@gmail.com>

References

1. Gares V, Dimeglio C, Guernec G, Fantin F, Lepage B, Korosok MR, savy N (2019). On the
use of optimal transportation theory to recode variables and application to database merging.
The International Journal of Biostatistics. Volume 16, Issue 1, 20180106, eISSN 1557-4679.
doi:10.1515/ijb-2018-0106

34 OT_joint

2. Gares V, Omer J (2020) Regularized optimal transport of covariates and outcomes in data re-
coding. Journal of the American Statistical Association. doi: 10.1080/01621459.2020.1775615

3. Anderberg, M.R. (1973), Cluster analysis for applications, 359 pp., Academic Press, New
York, NY, USA.

4. Gower J.C. (1971). A general coefficient of similarity and some of its properties. Biometrics,
27, 623–637

5. Makhorin A (2011). GNU Linear Programming Kit Reference Manual Version 4.47.http:
//www.gnu.org/software/glpk/

6. Theussl S, Schwendinger F, Hornik K (2020). ROI: An Extensible R Optimization Infrastruc-
ture.Journal of Statistical Software,94(15), 1-64. doi: 10.18637/jss.v094.i15

See Also

merge_dbs, OT_outcome, proxim_dist, avg_dist_closest

Examples

An example of JOINT algorithm with:
#-----
- A sample of the database tab_test
- Y1 and Y2 are a 2 outcomes encoded in 2 different forms in DB 1 and 2:
4 levels for Y1 and 3 levels for Y2
- n1 = n2 = 40
- 2 discrete covariates X1 and X2 defined as ordinal
- Distances estimated using the Gower function
Predictions are assessed for Y1 in B only
#-----

data(tab_test)
tab_test2 <- tab_test[c(1:40, 5001:5040), 1:5]

OUTJ1_B <- OT_joint(tab_test2,
nominal = c(1, 4:5), ordinal = c(2, 3),
dist.choice = "G", which.DB = "B"

)

An example of R-JOINT algorithm using the previous database,
and keeping the same options excepted for:
#-----
- The distances are estimated using the Gower function
- Inclusion of an error term in the constraints on
the marginals (relaxation term)
Predictions are assessed for Y1 AND Y2 in A and B respectively
#-----

R_OUTJ1 <- OT_joint(tab_test2,
nominal = c(1, 4:5), ordinal = c(2, 3),

https://doi.org/10.1080/01621459.2020.1775615
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
https://doi.org/10.18637/jss.v094.i15

OT_outcome 35

dist.choice = "G", maxrelax = 0.4,
which.DB = "BOTH"

)

The previous example of R-JOINT algorithm with:
- Adding a regularization term
Predictions are assessed for Y1 and Y2 in A and B respectively
#-----

R_OUTJ2 <- OT_joint(tab_test2,
nominal = c(1, 4:5), ordinal = c(2, 3),
dist.choice = "G", maxrelax = 0.4, lambda.reg = 0.9,
which.DB = "BOTH"

)

Another example of JOINT algorithm with:
#-----
- A sample of the database simu_data
- Y1 and Y2 are a 2 outcomes encoded in 2 different forms in DB A and B:
(3 levels for Y and 5 levels for Z)
- n1 = n2 = 100
- 3 covariates: Gender, Smoking and Age in a qualitative form
- Complete Case study
- The Hamming distance
Predictions are assessed for Y1 and Y2 in A and B respectively
#-----

data(simu_data)
simu_data2 <- simu_data[c(1:100, 401:500), c(1:4, 7:8)]
simu_data3 <- simu_data2[!is.na(simu_data2$Age),]

OUTJ2 <- OT_joint(simu_data3, prox.X = 0.10,
convert.num = 6, convert.class = 3,
nominal = c(1, 4:5), ordinal = 2:3,
dist.choice = "H", which.DB = "B"

)

OT_outcome OT_outcome()

Description

The function OT_outcome integrates two algorithms called (OUTCOME) and (R-OUTCOME) dedicated
to the solving of recoding problems in data fusion using optimal transportation (OT) of the joint
distribution of outcomes.

36 OT_outcome

Usage

OT_outcome(
datab,
index_DB_Y_Z = 1:3,
quanti = NULL,
nominal = NULL,
ordinal = NULL,
logic = NULL,
convert.num = NULL,
convert.class = NULL,
FAMD.coord = "NO",
FAMD.perc = 0.8,
dist.choice = "E",
percent.knn = 1,
maxrelax = 0,
indiv.method = "sequential",
prox.dist = 0,
solvR = "glpk",
which.DB = "BOTH"

)

Arguments

datab a data.frame made up of two overlayed databases with at least four columns
sorted in a random order. One column must be a column dedicated to the identi-
fication of the two databases ranked in ascending order (For example: 1 for the
top database and 2 for the database from below, or more logically here A and B
...But not B and A!). One column (Y here but other names are allowed) must
correspond to the target variable related to the information of interest to merge
with its specific encoding in the database A (corresponding encoding should be
missing in the database B). In the same way, one column (Z here) corresponds
to the second target variable with its specific encoding in the database B (cor-
responding encoding should be missing in the database A). Finally, the input
database must have at least one shared covariate with same encoding in A and
B. Please notice that, if your data.frame has only one shared covariate (four
columns) with missing values (because no imputation is desired) then a warning
will appear and the algorithm will only run with complete cases.

index_DB_Y_Z a vector of three indexes of variables. The first index must correspond to the
index of the databases identifier column. The second index corresponds to the
index of the target variable in the first database (A) while the third index corre-
sponds to the column index related to the target variable in the second database
(B).

quanti a vector of column indexes of all the quantitative variables (database identifier
and target variables included if it is the case for them).

nominal a vector of column indexes of all the nominal (not ordered) variables (database
identifier and target variables included if it is the case for them).

OT_outcome 37

ordinal a vector of column indexes of all the ordinal variables (database identifier and
target variables included if it is the case for them).

logic a vector of column indexes of all the boolean variables of the data.frame.

convert.num indexes of the continuous (quantitative) variables to convert in ordered factors if
necessary. All declared indexes in this argument must have been declared in the
argument quanti (no conversion by default).

convert.class a vector indicating for each continuous variable to convert, the corresponding
desired number of levels. If the length of the argument convert_num exceeds 1
while the length of convert_class equals 1 (only one integer), each discretiza-
tion will count the same number of levels (quantiles).

FAMD.coord a logical that must be set to TRUE when user decides to work with principal
components of a factor analysis for mixed data (FAMD) instead of the set of
raw covariates (FALSE is the default value).

FAMD.perc a percent (between 0 and 1) linked to the FAMD.coord argument (0.8 is the de-
fault value). When this latter equals TRUE, this argument corresponds to the
minimum part of variability that must be taken into account by the principal
components of the FAMD method. This option fixes the remaining number of
principal components for the rest of the study.

dist.choice a character string (with quotes) corresponding to the distance function cho-
sen between: the euclidean distance ("E", by default), The Manhattan distance
("M"), the Gower distance ("G"), the Hamming distance ("H") for binary co-
variates only, and the Euclidean or Manhattan distance computed from principal
components of a factor analysis of mixed data ("FAMD"). See (1) for details.

percent.knn the ratio of closest neighbors involved in the computations of the cost matrices.
1 is the default value that includes all rows in the computation.

maxrelax the maximum percentage of deviation from expected probability masses. It must
be equal to 0 (default value) for the OUTCOME algorithm, and equal to a strictly
positive value for the R-OUTCOME algorithm. See (2) for details.

indiv.method a character string indicating the chosen method to get individual predictions
from the joint probabilities assessed, "sequential" by default, or "optimal". See
the details section and (2) for details.

prox.dist a probability (between 0 and 1) used to calculate the distance threshold below
which an individual (a row) is considered as a neighbor of a given profile of
covariates. When shared variables are all factors or categorical, it is suggested
to keep this option to 0.

solvR a character string that specifies the type of method selected to solve the opti-
mization algorithms. The default solver is "glpk".

which.DB a character string indicating the database to complete ("BOTH" by default, for
the prediction of Y and Z in the two databases), "A" only for the imputation of
Z in A, "B" only for the imputation of Y in B.

Details

A. THE RECODING PROBLEM IN DATA FUSION

38 OT_outcome

Assuming that Y and Z are two target variables which refered to the same target population in two
separate databases A and B respectively (no overlapping rows), so that Y and Z are never jointly
observed. Assuming also that A and B share a subset of common covariates X of any types (same
encodings in A and B) completed or not. Merging these two databases often requires to solve a
recoding problem by creating an unique database where the missing information of Y and Z is
fully completed.

B. INFORMATIONS ABOUT THE ALGORITHM

The algorithm integrated in the function OT_outcome provides a solution to the recoding problem
previously described by proposing an application of optimal transportation which aims is to search
for a bijective mapping between the distributions of of Y in A and Z in B. Mathematically, the
principle of the algorithm is based on the resolution of an optimization problem which provides
an optimal solution γ (as called in the related articles) that transfers the distribution of Y in A to
the distribution of Z in B (or conversely, according to the sense of the transport)and can be so
interpreted as an estimator of the joint distribution (Y, Z) in A (or B respetively). According to
this result, a second step of the algorithm provides individual predictions of Y in B (resp. of Z
in A, or both, depending on the choice specified by user in the argument which.DB). Two possible
approaches are available depending on the argument indiv.method:

• When indiv.method = "sequential", a nearest neighbor procedure is applied. This corre-
sponds to the use of the function indiv_grp_closest implemented in the function OT_outcome.

• When indiv.method = "optimal", a linear optimization problem is solved to determine the
individual predictions that minimize the sum of the individual distances in A (resp. in B)
with the modalities of Z in B (resp. Y in A). This approach is applied via the function
indiv_grp_optimal implemented in the function OT_outcome.

This algorithm supposes the respect of the two following assumptions:

1. Y must follow the same distribution in A and B. In the same way, Z follows the same distri-
bution in the two databases.

2. The conditional distribution (Y |X) must be identical in A and B. Respectively, (Z|X) is
supposed identical in A and B.

Because the first assumption can be too strong in some situations, a relaxation of the constraints of
marginal distribution is possible using the argument maxrelax. When indiv.method = "sequential"
and maxrelax = 0, the algorithm called OUTCOME (see (1) and (2)) is applied. In all other situations,
the algorithm applied corresponds to an algorithm called R_OUTCOME (see (2)). A posteriori esti-
mates of conditional probabilities P [Y |X,Z] and P [Z|X,Y] are available for each profile of co-
variates (see the output objects estimatorYB and estimatorZA). Estimates of γ are also available
according to the desired direction of the transport (from A to B and/or conversely. See γA and γB).

C. EXPECTED STRUCTURE FOR THE INPUT DATABASE

The input database is a data.frame that must be saved in a specific form by users:

• Two overlayed databases containing a common column of database identifiers (A and B, 1 or
2, by examples, encoded in numeric or factor form)

• A column corresponding to the target variable with its specific encoding in A (For example a
factor Y encoded in nY levels, ordered or not, with NAs in the corresponding rows of B)

• A column corresponding to the second target outcome with its specific endoded in B (For
example a factor Z in nZ levels, with NAs in rows of A)

OT_outcome 39

• The order of the variables in the database have no importance but the column indexes related
to the three columns previously described (ie ID, Y and Z) must be rigorously specified in the
argument index_DB_Y_Z.

• A set of shared common covariates (at least one but more is recommended) of any type,
complete or not (provided that the number of covariates exceeds 1) is required.

The function merge_dbs is available in this package to assist user in the preparation of their
databases, so please, do not hesitate to use it beforehand if necessary.

Remarks about the target variables:

• A target variable can be of categorical type, but also discrete, stored in factor, ordered or not.
Nevertheless, notice that, if the variable is stored in numeric it will be automatically converted
in ordered factors.

• If a target outcome is incomplete, the corresponding rows will be automatically dropped dur-
ing the execution of the function.

The type of each variables (including ID, Y and Z) of the database must be rigorously specified
once, in one of the four arguments quanti,nominal, ordinal and logic.

D. TRANSFORMATIONS OF CONTINUOUS COVARIATES

The function OT_outcome integrates in its syntax a process dedicated to the categorization of con-
tinuous covariates. For this, it is necessary to rigorously fill in the arguments convert.num and
convert.class. The first one informs about the indexes in database of the continuous variables
to transform in ordered factor while the second one specifies the corresponding number of desired
balanced levels (for unbalanced levels, users must do transformations by themselves). Therefore
convert.num and convert.class must be vectors of same length, but if the length of convert.num
exceeds 1, while the length of convert.class is 1, then, by default, all the covariates to con-
vert will have the same number of classes, that corresponds to the value specified in the argument
convert.class. Please notice that only covariates can be transformed (not outcomes) and missing
informations are not taken into account for the transformations. Moreover, all the indexes informed
in the argument convert.num must also be informed in the argument quanti.

E. INFORMATIONS ABOUT DISTANCE FUNCTIONS

Each individual (or row) of a given database is here characterized by their covariates, so the distance
between two individuals or groups of individuals depends on similarities between covariates accord-
ing to the distance function chosen by user (via the argument dist.choice). Actually four distance
functions are implemented in OT_outcome to take into account the most frequently encountered
situation (see (3)):

• the Manhattan distance ("M")
• the Euclidean distance ("E")
• the Gower distance for mixed data (see (4): "G")
• the Hamming distance for binary data ("H")

Moreover, it is also possible to directly apply the first three distances mentioned on coordinates
extracted from a multivariate analysis (Factor Analysis for Mixed Data, see (5)) applied on raw
covariates using the arguments FAMD.coord and FAMD.perc. This method is used (1).

As a decision rule, for a given profile of covariates Pj , an individual i will be considered as a
neighbor of Pj if dist(i, Pj) < prox.dist × max(dist(i, Pj)) where prox.dist must be fixed by
user.

40 OT_outcome

F. INFORMATIONS ABOUT THE SOLVER

The argument solvR permits user to choose the solver of the optimization algorithm. The default
solver is "glpk" that corresponds to the GNU Linear Programming Kit (see (6) for more details).
Moreover, the function actually uses the R optimization infrastructure of the package ROI which
offers a wide choice of solver to users by easily loading the associated plugins of ROI (see (7)).

For more details about the algorithms integrated in OT_outcome, please consult (1) and (2).

Value

A "otres" class object of 9 elements:

time_exe the running time of the function

gamma_A a matrix corresponding to an estimation of the joint distribution of (Y,Z) in A

gamma_B a matrix corresponding to an estimation of the joint distribution of (Y,Z) in B

profile a data.frame that gives all details about the remaining P profiles of covariates.
These informations can be linked to the estimatorZA and the estimatorYB
objects for a better interpretation of the results.

res_prox the outputs of the function proxim_dist

estimatorZA an array that corresponds to estimates of the probability distribution of Z condi-
tional to X and Y in database A. The number of rows of each table corresponds
to the total number of profiles of covariates. The first dimension of each table
(rownames) correspond to the profiles of covariates sorted by order of appear-
ance in the merged database. The second dimension of the array (columns of
the tables) corresponds to the levels of Y while the third element corresponds to
the levels of Z.

estimatorYB an array that corresponds to estimates of the probability distribution of Y condi-
tional to X and Z in database B. The number of rows of each table corresponds
to the total number of profiles of covariates. The first dimension of each table
(rownames) correspond to the profiles of covariates sorted by order of appear-
ance in the merged database. The second dimension of the array (columns of
the tables) corresponds to the levels of Z while the third element corresponds to
the levels of Y .

DATA1_OT the database A with the individual predictions of Z using an optimal transporta-
tion algorithm (OUTCOME) or R-OUTCOME

DATA2_OT the database B with the individual predictions of Y using an optimal transporta-
tion algorithm (OUTCOME) or R-OUTCOME

Author(s)

Gregory Guernec, Valerie Gares, Jeremy Omer

<otrecod.pkg@gmail.com>

References

1. Gares V, Dimeglio C, Guernec G, Fantin F, Lepage B, Korosok MR, savy N (2019). On the
use of optimal transportation theory to recode variables and application to database merging.

OT_outcome 41

The International Journal of Biostatistics. Volume 16, Issue 1, 20180106, eISSN 1557-4679.
doi:10.1515/ijb-2018-0106

2. Gares V, Omer J (2020) Regularized optimal transport of covariates and outcomes in data re-
coding. Journal of the American Statistical Association. doi: 10.1080/01621459.2020.1775615

3. Anderberg, M.R. (1973), Cluster analysis for applications, 359 pp., Academic Press, New
York, NY, USA.

4. Gower J.C. (1971). A general coefficient of similarity and some of its properties. Biometrics,
27, 623–637.

5. Pages J. (2004). Analyse factorielle de donnees mixtes. Revue Statistique Appliquee. LII (4).
pp. 93-111.

6. Makhorin A (2011). GNU Linear Programming Kit Reference Manual Version 4.47.http:
//www.gnu.org/software/glpk/

7. Theussl S, Schwendinger F, Hornik K (2020). ROI: An Extensible R Optimization Infrastruc-
ture.Journal of Statistical Software,94(15), 1-64. doi: 10.18637/jss.v094.i15

See Also

transfo_dist,proxim_dist, avg_dist_closest, indiv_grp_closest, indiv_grp_optimal

Examples

Using a sample of simu_data dataset
Y and Z are a same variable encoded in 2 different forms:
(3 levels for Y and 5 levels for Z)
#--------
data(simu_data)
simu_dat <- simu_data[c(1:200, 301:500),]

An example of OUTCOME algorithm that uses:
#-----
- A nearest neighbor procedure for the estimation of individual predictions
- The Manhattan distance function
- 90% of individuals from each modalities to calculate average distances
between individuals and modalities
Predictions are assessed for Y in B and Z in A
#-----

OUTC1 <- OT_outcome(simu_dat,
quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
dist.choice = "M", maxrelax = 0,
indiv.method = "sequential"

)
head(OUTC1$DATA1_OT) # Part of the completed database A
head(OUTC1$DATA2_OT) # Part of the completed database B

head(OUTC1$estimatorZA[, , 1])
... Corresponds to P[Z = 1|Y,P1] when P1 corresponds to the 1st profile of covariates (P_1)
detailed in the 1st row of the profile object:
OUTC1$profile[1,] # Details of P_1

https://doi.org/10.1080/01621459.2020.1775615
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
https://doi.org/10.18637/jss.v094.i15

42 OT_outcome

So estimatorZA[1,1,1]= 0.2 corresponds to an estimation of:
P[Z = 1|Y=[20-40],Gender_2=0,Treatment_2=1,Treatment_3=0,Smoking_2=1,Dosage=3,Age=65.44]
Thus, we can conclude that all individuals with the P_1 profile of covariates have
20% of chance to be affected to the 1st level of Z in database A.
... And so on, the reasoning is the same for the estimatorYB object.

An example of OUTCOME algorithm with same conditions as the previous example, excepted that;
- Only the individual predictions of Y in B are required
- The continuous covariates "age" (related index = 8) will be converted in an ordinal factors
of 3 balanced classes (tertiles)
- The Gower distance is now used

OUTC2_B <- OT_outcome(simu_dat,
quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
dist.choice = "G", maxrelax = 0,
convert.num = 8, convert.class = 3,
indiv.method = "sequential", which.DB = "B"

)

An example of OUTCOME algorithm with same conditions as the first example, excepted that;
- Only the individual predictions of Z in A are required
- The continuous covariates "age" (related index = 8) will be converted in an ordinal factors
of 3 balanced classes (tertiles)
- Here, the Hamming distance can be applied because, after conversion, all covariates are factors.
Disjunctive tables of each covariates will be automatically used to work with a set of binary
variables.

OUTC3_B <- OT_outcome(simu_data,
quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
dist.choice = "H", maxrelax = 0,
convert.num = 8, convert.class = 3,
indiv.method = "sequential", which.DB = "B"

)

An example of R-OUTCOME algorithm using:
- An optimization procedure for individual predictions on the 2 databases
- The Manhattan distance
- Raw covariates

R_OUTC1 <- OT_outcome(simu_data,
quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
dist.choice = "M", maxrelax = 0,
indiv.method = "optimal"

)

power_set 43

An example of R-OUTCOME algorithm with:
- An optimization procedure for individual predictions on the 2 databases
- The use of Euclidean distance on coordinates from FAMD
- Raw covariates

R_OUTC2 <- OT_outcome(simu_data,
quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
dist.choice = "E",
FAMD.coord = "YES", FAMD.perc = 0.8,
indiv.method = "optimal"

)

An example of R-OUTCOME algorithm with relaxation on marginal distributions and:
- An optimization procedure for individual predictions on the 2 databases
- The use of the euclidean distance
- An arbitrary coefficient of relaxation
- Raw covariates
#-----

R_OUTC3 <- OT_outcome(simu_data,
quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
dist.choice = "E", maxrelax = 0.4,
indiv.method = "optimal"

)

power_set power_set()

Description

A function that gives the power set P (S) of any non empty set S.

Usage

power_set(n, ordinal = FALSE)

Arguments

n an integer. The cardinal of the set

ordinal a boolean. If TRUE the power set is only composed of subsets of consecutive
elements, FALSE (by default) otherwise.

Value

A list of 2n − 1 subsets (The empty set is excluded)

44 proxim_dist

Author(s)

Gregory Guernec

<otrecod.pkg@gmail.com>

References

Devlin, Keith J (1979). Fundamentals of contemporary set theory. Universitext. Springer-Verlag

Examples

Powerset of set of 4 elements
set1 <- power_set(4)

Powerset of set of 4 elements by only keeping
subsets of consecutive elements
set2 <- power_set(4, ordinal = TRUE)

proxim_dist proxim_dist()

Description

proxim_dist computes the pairwise distance matrix of a database and cross-distance matrix be-
tween two databases according to various distances used in the context of data fusion.

Usage

proxim_dist(data_file, indx_DB_Y_Z = 1:3, norm = "E", prox = 0.3)

Arguments

data_file a data.frame corresponding ideally to an output object of the function transfo_dist.
Otherwise this data.frame is the result of two overlayed databases with a col-
umn of database identifier ("A" and "B", 1 and 2, for example), a target variable
(called Y by example) only known in the first database, a target variable (Z)
only stored in the second database, such that Y and Z summarize a same infor-
mation differently encoded in the two databases and set of common covariates
(at least one) of any type. The order of the variables in the data.frame have no
importance. The type of the covariates must be in accordance with the chosen
distance function in the norm option.

indx_DB_Y_Z a vector of three column indexes corresponding to the database identifier, the tar-
get variable of the above database and the target variable of the below database.
The indexes must be declared in this specific order.

proxim_dist 45

norm a character string indicating the choice of the distance function. This latest de-
pends on the type of the common covariates: the Hamming distance for binary
covariates only (norm = "H"), the Manhattan distance ("M", by default) and the
euclidean distance ("E") for continuous covariates only, or the Gower distance
for mixed covariates ("G").

prox a ratio (betwen 0 and 1) used to calculate the distance threshold below which
an individual (a row or a given statistical unit) is considered as a neighbor of a
given profile of covariates. 0.3 is the default value.

Details

This function is the first step of a family of algorithms that solve recoding problems of data fu-
sion using optimal transportation theory (see the details of these corresponding models OUTCOME,
R_OUTCOME, JOINT and R_JOINT in (1) and (2)). The function proxim_dist is directly implemented
in the functions OT_outcome and OT_joint but can also be used separately as long as the input
database has as suitable structure. Nevertheless, its preparation will have to be rigorously made in
two steps detailled in the following sections.

A. EXPECTED STRUCTURE FOR THE INPUT DATABASE

Firsly, the initial database required is a data.frame that must be prepared in a specific form by users.
From two separate databases, the function merge_dbs available in this package can assist users
in this initial merging, nevertheless notice that this preliminary transformation can also be made
directly by following the imposed structure described below: two overlayed databases containing
a common column of database identifiers (A and B for examples, encoded in numeric or factor
form), a column corresponding to the target variable with its specific encoding in A (for example
a factor Y encoded in nY levels, ordered or not, with NAs in the corresponding rows of B), a
column corresponding to the same variable with its specific endoded in B (for example a factor Z
in nZ levels, with NAs in database A), and a set of shared covariates (at least one) between the two
databases.

The order of these variables in the database have no importance but the column indexes related to
database identifier, Y and Z, must be specified in the indx_DB_Y_Z option. Users can refer to the
structure of the table simu_data available in the package to adapt their databases to the inital format
required.

Missing values are allowed on covariates only, and are excluded from all computations involving
the rows within which they occur. In the particular case where only one covariate with NAs is used,
we recommend working with imputed or complete case only to avoid the presence of NA in the
distance matrix that will be computed a posteriori. If the database counts many covariates and some
of them have missing data, user can keep them or apply beforehand the imput_cov function on
data.frame to deal with this problem.

B. DISTANCE FUNCTIONS AND TYPES OF COVARIATES

In a second step, the shared variables of the merged database will have to be encoded according to
the choice of the distance function fixed by user, knowing that it is also frequent that it is the type
of the variables which fixes the distance function to choose. The function transfo_dist is avail-
able in the package to assist users in this task but a user can also decide to make this preparation
by themselves. Thus, with the Euclidean or Manhattan distance ((3), norm = "E" or "M"), if all
types of variables are allowed, logical variables are transformed in binary variables, and categor-
ical variables (factors ordered or not) are replaced by their related disjunctive tables (the function
transfo_quali can make these specific transformations). The Hamming distance (norm = "H")

46 proxim_dist

only requires binary variables (all other forms are not allowed). In this context, continuous vari-
ables could have been converted in factor of k levels (k > 2) beforehand. The categorical covariates
are then transformed in disjunctive tables (containing the (k−1) corresponding binary variables) be-
fore use. With this distance, categorical variables are also transformed in disjunctive tables. Notice
that, using the Hamming distance could be quite long in presence of NAs on covariates. Finally,
the Gower distance ((4), norm = "G") uses the (gower.dist) function (5) and so allows logical,
categorical and numeric variables without preliminary transformations.

In conclusion, the structure of the data.frame required in input of the function proxim_dist corre-
sponds to two overlayed databases with two target outcomes and a set of shared covariates whose
encodings depend on the distance function choosen by user.

If some columns are excluded when computing an Euclidean, Manhattan, or Hamming distance
between two rows, the sum is scaled up proportionally to the number of columns used in the com-
putation as proposed by the standard (dist) function. If all pairs are excluded when computing
a particular distance, instead of putting NA in the corresponding cell of the distance matrix, the
process stops and an object listing the problematic rows is proposed in output. It suggests users to
remove these rows before running the process again or impute NAs related to these rows (see (6)
for more details).

C. PROFILES OF COVARIATES AND OUTPUT DETAILS

Whatever the type (mixed or not) and the number of covariates in the data.frame of interest, the
function proxim_dist firstly detects all the possible profiles (or combinations) of covariates from
the two databases, and saves them in the output profile. For example, assuming that a data.frame
in input (composed of two overlayed data.frames A and B) have three shared binary covariates
(identically encoded in A and B) so the sequences 011 and 101 will be considered as two distinct
profiles of covariates. If each covariate is a factor of n1, n2 and n3 levels respectively, so it exists at
most n1 × n2 × n3 possible profiles of covariates. This number is considered as a maximum here
because only the profiles of covariates met in at least one of the two databases will be kept for the
study.

proxim_dist classifies individuals from the two databases according to their proximities to each
profile of covariates and saves the corresponding indexes of rows from A and B in two lists indXA
and indXB respectively. indXA and indXB thus contain as many objects as covariates profiles and
the proximity between a given profile and a given individual is defined as follows. The func-
tion also provides in output the list of all the encountered profiles of covariates. As a decision
rule, for a given profile of covariates Pj , an individual i will be considered as a neighbor of Pj

if dist(i, Pj) < prox × max(dist(i, Pj)) where prox will be fixed by user. Set the value 0 to
the prox parameter assures that each individual of A (and B respectively) is exactly the profile of
one profile of covariates. Therefore, it is not recommended in presence of continuous coavariates.
Conversely, assign the value 1 to prox is not recommended because it assumes that each individual
is neighbor with all the encountered profiles of covariates.

Value

A list of 16 elements (the first 16 detailed below) is returned containing various distance matrices
and lists useful for the algorithms that used Optimal Transportation theory. Two more objects (the
last two of the following list) will be returned if distance matrices contain NAs.

FILE_NAME a simple reminder of the name of the raw database

nA the number of rows of the first database (A)

proxim_dist 47

nB the number of rows of the second database (B)

Xobserv the subset of the two overlayed databases composed of the shared variables only

profile the different encountered profiles of covariates according to the data.frame

Yobserv the numeric values of the target variable in the first database

Zobserv the numeric values of the target variable in the second database

D a distance matrix corresponding to the computed distances between individuals
of the two databases

Y the nY levels of the target variable in numeric form, in the first database

Z the nZ levels of the target variable in numeric form, in the second database

indY a list of nY groups of individual (or row) numbers where each group corresponds
to the individuals indexes related to a given level of Y in the first database

indZ a list of nZ groups of individual (or row) numbers where each group corresponds
to the individuals indexes related to a given level of Z in the second database

indXA a list of individual (row) indexes from the first database, sorted by profiles of
covariates according to their proximities. See the Details part for more infor-
mation

indXB a list of individual (row) indexes from the second database, sorted by profiles
of covariates according to their proximities. See the Details part for more
information

DA a distance matrix corresponding to the pairwise distances between individuals
of the first database

DB a distance matrix corresponding to the pairwise distances between individuals
of the second database

ROWS_TABLE combinations of row numbers of the two databases that generate NAs in D

ROWS_TO_RM number of times a row of the first or second database is involved in the NA
process of D

Author(s)

Gregory Guernec, Valerie Gares, Jeremy Omer

<otrecod.pkg@gmail.com>

References

1. Gares V, Dimeglio C, Guernec G, Fantin F, Lepage B, Korosok MR, savy N (2019). On the
use of optimal transportation theory to recode variables and application to database merging.
The International Journal of Biostatistics. Volume 16, Issue 1, 20180106, eISSN 1557-4679.
doi:10.1515/ijb-2018-0106

2. Gares V, Omer J (2020) Regularized optimal transport of covariates and outcomes in data re-
coding. Journal of the American Statistical Association. doi: 10.1080/01621459.2020.1775615

3. Anderberg, M.R. (1973), Cluster analysis for applications, 359 pp., Academic Press, New
York, NY, USA.

4. Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics,
27, 623–637.

https://doi.org/10.1080/01621459.2020.1775615

48 proxim_dist

5. D’Orazio M. (2015). Integration and imputation of survey data in R: the StatMatch package.
Romanian Statistical Review, vol. 63(2)

6. Borg, I. and Groenen, P. (1997) Modern Multidimensional Scaling. Theory and Applications.
Springer.

See Also

transfo_dist, imput_cov, merge_dbs, simu_data

Examples

data(simu_data)
The covariates of the data are prepared according to the chosen distance
using the transfo_dist function

Ex 1: The Manhattan distance

man1 <- transfo_dist(simu_data,
quanti = c(3, 8), nominal = c(1, 4:5, 7),
ordinal = c(2, 6), logic = NULL, prep_choice = "M"

)
mat_man1 <- proxim_dist(man1, norm = "M") # man1 compatible with norm = "E" for Euclidean

Ex 2: The Euclidean and Manhattan distance applied on coordinates from FAMD

eucl_famd <- transfo_dist(simu_data,
quanti = c(3, 8), nominal = c(1, 4:5, 7),
ordinal = c(2, 6), logic = NULL, prep_choice = "FAMD", info = 0.80

)
mat_e_famd <- proxim_dist(eucl_famd, norm = "E")

mat_m_famd <- proxim_dist(eucl_famd, norm = "M")

Ex 3: The Gower distance with mixed covariates

gow1 <- transfo_dist(simu_data[c(1:100, 301:400),],
quanti = c(3, 8), nominal = c(1, 4:5, 7),
ordinal = c(2, 6), logic = NULL, prep_choice = "G"

)
mat_gow1 <- proxim_dist(gow1, norm = "G")

Ex 4a: The Hamming distance with binary (but incomplete) covariates only

categorization of the continuous covariates age by tertiles
ham1 <- transfo_dist(simu_data,

quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
convert_num = 8, convert_class = 3, prep_choice = "H"

select_pred 49

)
mat_ham1 <- proxim_dist(ham1, norm = "H")
Be patient ... It could take few minutes

Ex 4b: The Hamming distance with complete cases on nominal and ordinal covariates only
simu_data_CC <- simu_data[(!is.na(simu_data[, 5])) & (!is.na(simu_data[, 6])) &

(!is.na(simu_data[, 7])), 1:7]
ham2 <- transfo_dist(simu_data_CC,

quanti = 3, nominal = c(1, 4:5, 7), ordinal = c(2, 6),
prep_choice = "H"

)
mat_ham2 <- proxim_dist(ham2, norm = "H")

Ex 5: PARTICULAR CASE, If only one covariate with no NAs

man2 <- man1[, c(1:3, 7)] # Only Smoking variable
man2_nona <- man2[!is.na(man2[, 4]),] # Keep complete case
mat_man2_nona <- proxim_dist(man2_nona, norm = "M", prox = 0.10)

mat_man2_nona_H <- proxim_dist(man2_nona, norm = "H") # Hamming

Ex 6: PARTICULAR CASE, many covariates but NAs in distance matrix

We generated NAs in the man1 object so that:
dist(A4,B102) and dist(A122,B102) returns NA whatever the norm chosen:
man1b <- man1
man1b[4, 7:9] <- NA
man1b[122, 6:9] <- NA
man1b[300 + 102, 4:6] <- NA
mat_man3 <- proxim_dist(man1b, norm = "M")
The process stopped indicates 2 NAs and the corresponding row numbers
The 2nd output of mat_man3 indicates that removing first the 102th row of the database
B is enough to solve the pb:
man1c <- man1b[-402,]
mat_man4 <- proxim_dist(man1c, norm = "M")

select_pred select_pred()

Description

Selection of a subset of non collinear predictors having relevant relationships with a given target
outcome using a random forest procedure.

50 select_pred

Usage

select_pred(
databa,
Y = NULL,
Z = NULL,
ID = 1,
OUT = "Y",
quanti = NULL,
nominal = NULL,
ordinal = NULL,
logic = NULL,
convert_num = NULL,
convert_class = NULL,
thresh_cat = 0.3,
thresh_num = 0.7,
thresh_Y = 0.2,
RF = TRUE,
RF_ntree = 500,
RF_condi = FALSE,
RF_condi_thr = 0.2,
RF_SEED = sample(1:1e+06, 1)

)

Arguments

databa a data.frame with a column of identifiers (of row or of database in the case of
two concatened databases), an outcome, and a set of predictors. The number of
columns can exceed the number of rows.

Y the label of a first target variable with quotes

Z the label of a second target variable with quotes when databa is the result of
two overlayed databases.

ID the column index of the database identifier (The first column by default) in the
case of two concatened databases, a row identifier otherwise

OUT a character that indicates the outcome to predict in the context of overlayed
databases. By default, the outcome declared in the argument Y is predicted.
Another possible outcome to predict can be set with the related argument Z.

quanti a vector of integers corresponding to the column indexes of all the numeric
predictors.

nominal a vector of integers which corresponds to the column indexes of all the categor-
ical nominal predictors.

ordinal a vector of integers which corresponds to the column indexes of all the categor-
ical ordinal predictors.

logic a vector of integers indicating the indexes of logical predictors. No index re-
mained by default

select_pred 51

convert_num a vector of integers indicating the indexes of quantitative variables to convert in
ordered factors. No index remained by default. Each index selected has to be
defined as quantitative in the argument quanti.

convert_class a vector of integers indicating the number of classes related to each transforma-
tion of quantitative variable in ordered factor. The length of this vector can not
exceed the length of the argument convert_num. Nevertheless, if length(convert_num)
> 1 and length(convert_class) = 1, all quantitative predictors selected for dis-
cretization will have by default the same number of classes.

thresh_cat a threshold associated to the Cramer’s V coefficient (= 0.30 by default)

thresh_num a threshold associated to the Spearman’s coefficient of correlation (= 0.70 by
default)

thresh_Y a threshold linked to the RF approach, that corresponds to the minimal cumula-
tive percent of importance measure required to be kept in the final list of predic-
tors.

RF a boolean sets to TRUE (default) if a random forest procedure must be applied
to select the best subset of predictors according to the outcome.Otherwise, only
pairwise associations between predictors are used for the selection.

RF_ntree the number of bootsrap samples required from the row datasource during the
random forest procedure

RF_condi a boolean specifying if the conditional importance measures must be assessed
from the random forest procedure (TRUE) rather than the standard variable im-
portance measures (FALSE by default)

RF_condi_thr a threshold linked to (1 - pvalue) of an association test between each predictor
X and the other variables, given that a threshold value of zero will include all
variables in the computation of the conditional importance measure of X (0.20
is the default value). Conversely, a larger threshold will only keeps the subset
of variables that is strongly correlated to X for the computation of the variable
importance measure of X .

RF_SEED an integer used as argument by the set.seed() for offsetting the random number
generator (random integer by default). This value is only used for RF method.

Details

The select_pred function provides several tools to identify, on the one hand, the relationships
between predictors, by detecting especially potential problems of collinearity, and, on the other
hand, proposes a parcimonious subset of relevant predictors (of the outcome) using appropriate
random forest procedures. The function which can be used as a preliminary step of prediction in
regression areas is particularly adapted to the context of data fusion by providing relevant subsets
of predictors (the matching variables) to algorithms dedicated to the solving of recoding problems.

A. REQUIRED STRUCTURE FOR THE DATABASE

The expected input database is a data.frame that especially requires a specific column of row identi-
fier and a target variable (or outcome) having a finite number of values or classes (ordinal, nominal
or discrete type). Notice that if the chosen outcome is in numeric form, it will be automatically
converted in ordinal type. The number of predictors is not a constraint for select_pred (even if,
with less than three variables a process of variables selection has no real sense...), and can exceed

52 select_pred

the number of rows (no problem of high dimensionality here). The predictors can be continuous
(quantitative), boolean, nominal or ordinal with or without missing values. In presence of numeric
variables, users can decide to discretize them or a part of them by themselves beforehand. They
can also choose to use the internal process directly integrated in the function. Indeed, to assist
users in this task, two arguments called convert_num and convert_class dedicated to these trans-
formations are available in input of the function. These options make the function select_pred
particularly adapted to the function OT_joint which only allows data.frame with categorical co-
variates. With the argument convert_num, users choose the continuous variables to convert and the
related argument convert_class specifies the corresponding number of classes chosen for each
discretization. It is the reason why these two arguments must be two vectors of indexes of same
length. Nevertheless, an unique exception exists when convert_class is equalled to a scalar S. In
this case, all the continuous predictors selected for conversion will be discretized with a same num-
ber of classes S. By example, if convert_class = 4, all the continuous variables specified in the
convert_num argument will be discretized by quartiles. Moreover, notice that missing values from
incomplete predictors to convert are not taken into account during the conversion, and that each
predictor specified in the argument convert_num must be also specified in the argument quanti. In
this situation, the label of the outcome must be entered in the argument Y, and the arguments Z and
OUT must keep their default values. Finally, the order of the column indexes related to the identifier
and the outcome have no importance.

For a better flexibility, the input database can also be the result of two overlayed databases. In
this case, the structure of the database must be similar to those observed in the datasets simu_data
and tab_test available in the package with a column of database identifier, one target outcome
by database (2 columns), and a subset of shared predictors. Notice that, overlaying two separate
databases can also be done easily using the function merge_dbs beforehand. The labels of the two
outcomes will have to be specified in the arguments Y for the top database, and in Z for the bottom
one. Notice also that the function select_pred deals with only one outcome at a time that will
have to be specified in the argument OUT which must be equalled to "Y" for the study of the top
database or "Z" for the study of the bottom one.

Finally, whatever the structure of the database declared in input, each column index related to the
database variable must be entered once (and only once) in one of the following four arguments:
quanti, nominal, ordinal, logic.

B. PAIRWISE ASSOCIATIONS BETWEEN PREDICTORS

In a first step of process, select_pred calculates standard pairwise associations between predictors
according to their types.

1. Between categorical predictors (ordinal, nominal and logical): Cramer’s V (and Bias-corrected
Cramer’s V, see (1) for more details) are calculated between categorical predictors and the
argument thres_cat fixed the associated threshold beyond which two predictors can be con-
sidered as redundant. A similar process is done between the target variable and the subset of
categorical variables which provides in output a first table ranking the top scoring predictors.
This table summarizes the ability of each variable to predict the target outcome.

2. Between continuous predictors: If the ordinal and logic arguments differ from NULL, all
the corresponding predictors are beforehand converted in rank values. For numeric (quan-
titative), logical and ordinal predictors, pairwise correlations between ranks (Spearman) are
calculated and the argument thresh_num fixed the related threshold beyond which two predic-
tors can be considered as redundant. A similar process is done between the outcome and the
subset of discrete variables which provides in output, a table ranking the top scoring predictor

select_pred 53

variates which summarizes their abilities to predict the target. In addition, the result of a Farrar
and Glauber test is provided. This test is based on the determinant of the correlation matrix of
covariates and the related null hypothesis of the test corresponds to an absence of collinearity
between them (see (2) for more details about the method). In presence of a large number of
numeric covariates and/or ordered factors, the approximate Farrar-Glauber test, based on the
normal approximation of the null distribution is more adapted and its result is also provided
in output. These two tests are highly sensitive and, by consequence, it suggested to consider
these results as simple indicators of collinearity between predictors rather than an essential
condition of acceptability.

If the initial number of predictors is not too important, these informations can be sufficient to the
user for the visualization of potential problems of collinearity and for the selection of a subset
of predictors (RF = FALSE). It is nevertheless often necessary to complete this visualization by an
automatical process of selection like the Random Forest approach (see Breiman 2001, for a better
understanding of the method) linked to the function select_pred (RF = TRUE).

C. RANDOM FOREST PROCEDURE

As a final step of the process, a random forest approach (RF(3)) is here prefered (to regression
models) for two main reasons: RF methods allow notably the number of variables to exceed the
number of rows and remain applicable whatever the types of covariates considered. The function
select_pred integrates in its algorithm the functions cforest and varimp of the package party
(Hothorn, 2006) and so gives access to their main arguments.

A RF approach generally provides two types of measures for estimating the mean variable impor-
tance of each covariate in the prediction of an outcome: the Gini importance and the permutation
importance. These measurements must be used with caution, by taking into account the following
constraints:

1. The Gini importance criterion can produce bias in favor of continuous variables and variables
with many categories. To avoid this problem, only the permutation criterion is available in the
function.

2. The permutation importance criterion can overestimate the importance of highly correlated
predictors.

The function select_pred proposes three different scenarios according to the types of predictors:

1. The first one consists in boiling down to a set of categorical variables (ordered or not) by
discretizing all the continuous predictors beforehand, using the internal convert_num argu-
ment or another one, and then works with the conditional importance measures (RF_condi =
TRUE) which give unbiased estimations. In the spirit of a partial correlation, the conditional
importance measure related to a variable X for the prediction of an outcome Y , only uses the
subset of variables the most correlated toX for its computation. The argument RF_condi_thr
that corresponds exactly to the argument threshold of the function varimp, fixes a ratio be-
low which a variable Z is considered sufficiently correlated to X to be used as an adjustment
variable in the computation of the importance measure of X (In other words, Z is included in
the conditioning for the computation, see (4) and (5) for more details). A threshold value of
zero will include all variables in the computation of conditional importance measure of each
predictor X , while a threshold < 1, will only include a subset of variables. Two remarks
related to this method: firstly, notice that taking into account only subsets of predictors in the
computation of the variable importance measures could lead to a relevant saving of execution
time. Secondly, because this approach does not take into account incomplete information, the

54 select_pred

method will only be applied to complete data (incomplete rows will be temporarily removed
for the study).

2. The second possibility, always in presence of mixed types predictors, consists in the execution
of two successive RF procedures. The first one will be used to select an unique candidate
in each susbset of correlated predictors (detecting in the 1st section), while the second one
will extract the permutation measures from the remaining subset of uncorrelated predictors
(RF_condi = FALSE, by default). This second possibility has the advantage to work in presence
of incomplete predictors.

3. The third scenario consists in running a first time the function without RF process (RF =
FALSE), and according to the presence of highly correlated predictors or not, users can choose
to extract redundant predictors manually and re-runs the function with the subset of remain-
ing non-collinear predictors to avoid potential biases introduced by the standard permutations
measures.

The three scenarios finally lead to a list of uncorrelated predictors of the outcome sorted in impor-
tance order. The argument thresh_Y corresponds to the minimal percent of importance required
(and fixed by user) for a variable to be considered as a reliable predictor of the outcome. Finally,
because all random forest results are subjects to random variation, users can check whether the same
importance ranking is achieved by varying the random seed parameter (RF_SEED) or by increasing
the number of trees (RF_ntree).

Value

A list of 14 (if RF = TRUE) or 11 objects (Only the first ten objects if RF = FALSE) is returned:

seed the random number generator related to the study

outc the identifier of the outcome to predict

thresh a summarize of the different thresholds fixed for the study

convert_num the labels of the continuous predictors transformed in categorical form

DB_USED the final database used after potential transformations of predictors

vcrm_OUTC_cat a table of pairwise associations between the outcome and the categorical predic-
tors (Cramer’s V)

cor_OUTC_num a table of pairwise associations between the outcome and the continuous predic-
tors (Rank correlation)

vcrm_X_cat a table of pairwise associations between the categorical predictors (Cramer’s V)

cor_X_num a table of pairwise associations between the continuous predictors (Cramer’s V)

FG_test the results of the Farrar and Glauber tests, with and without approximation form

collinear_PB a table of predictors with problem of collinearity according to the fixed thresh-
olds

drop_var the labels of predictors to drop after RF process (optional output: only if RF=TRUE)

RF_PRED the table of variable importance measurements, conditional or not, according to
the argument condi_RF (optional output: Only if RF=TRUE)

RF_best the labels of the best predictors selected (optional output: Only if RF=TRUE)
according to the value of the argument thresh_Y

select_pred 55

Author(s)

Gregory Guernec

<gregory.guernec@inserm.fr>

References

1. Bergsma W. (2013). A bias-correction for Cramer’s V and Tschuprow’s T. Journal of the
Korean Statistical Society, 42, 323–328.

2. Farrar D, and Glauber R. (1968). Multicolinearity in regression analysis. Review of Eco-
nomics and Statistics, 49, 92–107.

3. Breiman L. (2001). Random Forests. Machine Learning, 45(1), 5–32.

4. Hothorn T, Buehlmann P, Dudoit S, Molinaro A, Van Der Laan M (2006). “Survival Ensem-
bles.” Biostatistics, 7(3), 355–373.

5. Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008). Conditional Variable Im-
portance for Random Forests. BMC Bioinformatics, 9, 307. https://bmcbioinformatics.
biomedcentral.com/articles/10.1186/1471-2105-9-307

See Also

simu_data, tab_test, OT_joint

Examples

Example 1
#-----
- From two overlayed databases: using the table simu_data
- Searching for the best predictors of "Yb1"
- Using the row database
- The RF approaches are not required
#-----

data(simu_data)
sel_ex1 <- select_pred(simu_data,

Y = "Yb1", Z = "Yb2", ID = 1, OUT = "Y",
quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
thresh_cat = 0.30, thresh_num = 0.70, thresh_Y = 0.20,
RF = FALSE

)

Example 2
#-----
- With same conditions as example 1
- Searching for the best predictors of "Yb2"
#-----

sel_ex2 <- select_pred(simu_data,
Y = "Yb1", Z = "Yb2", ID = 1, OUT = "Z",
quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-307
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-307

56 select_pred

thresh_cat = 0.30, thresh_num = 0.70, thresh_Y = 0.20,
RF = FALSE

)

Example 3
#-----
- With same conditions as example 1
- Using a RF approach to estimate the standard variable importance measures
and determine the best subset of predictors
- Here a seed is required
#-----

sel_ex3 <- select_pred(simu_data,
Y = "Yb1", Z = "Yb2", ID = 1, OUT = "Y",
quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
thresh_cat = 0.30, thresh_num = 0.70, thresh_Y = 0.20,
RF = TRUE, RF_condi = FALSE, RF_SEED = 3023

)

Example 4
#-----
- With same conditions as example 1
- Using a RF approach to estimate the conditional variable importance measures
and determine the best subset of predictors
- This approach requires to convert the numeric variables: Only "Age" here
discretized in 3 levels
#-----

sel_ex4 <- select_pred(simu_data,
Y = "Yb1", Z = "Yb2", ID = 1, OUT = "Z",
quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
convert_num = 8, convert_class = 3,
thresh_cat = 0.30, thresh_num = 0.70, thresh_Y = 0.20,
RF = TRUE, RF_condi = TRUE, RF_condi_thr = 0.60, RF_SEED = 3023

)

Example 5
#-----
- Starting with a unique database
- Same conditions as example 1
#-----
simu_A <- simu_data[simu_data$DB == "A", -3] # Base A

sel_ex5 <- select_pred(simu_A,
Y = "Yb1",
quanti = 7, nominal = c(1, 3:4, 6), ordinal = c(2, 5),
thresh_cat = 0.30, thresh_num = 0.70, thresh_Y = 0.20,
RF = FALSE

)

Example 6
#-----

simu_data 57

- Starting with an unique database
- Using a RF approach to estimate the conditional variable importance measures
and determine the best subset of predictors
- This approach requires to convert the numeric variables: Only "Age" here
discretized in 3 levels
#-----

simu_B <- simu_data[simu_data$DB == "B", -2] # Base B

sel_ex6 <- select_pred(simu_B,
Y = "Yb2",
quanti = 7, nominal = c(1, 3:4, 6), ordinal = c(2, 5),
convert_num = 7, convert_class = 3,
thresh_cat = 0.30, thresh_num = 0.70, thresh_Y = 0.20,
RF = TRUE, RF_condi = TRUE, RF_condi_thr = 0.60, RF_SEED = 3023

)

simu_data A simulated dataset to test the functions of the OTrecod package

Description

The first 300 rows belong to the database A, while the next 400 rows belong to the database B.
Five covariates: Gender, Treatment, Dosage, Smoking and Age are common to both databases
(same encodings). Gender is the only complete covariate. The variables Yb1 and Yb2 are the target
variables of A and B respectively, summarizing a same information encoded in two different scales.
that summarize a same information saved in two distinct encodings, that is why, Yb1 is missing in
the database B and Yb2 is missing in the database A.

Usage

simu_data

Format

A data.frame made of 2 overlayed databases (A and B) with 700 observations on the following 8
variables.

DB the database identifier, a character with 2 possible classes: A or B

Yb1 the target variable of the database A, stored as factor and encoded in 3 ordered levels: [20-40],
[40-60[,[60-80] (the values related to the database B are missing)

Yb2 the target variable of the database B, stored as integer (an unknown scale from 1 to 5) in the
database B (the values related to A are missing)

Gender a factor with 2 levels (Female or Male) and no missing values

Treatment a covariate of 3 classes stored as a character with 2% of missing values: Placebo, Trt
A, Trt B

58 tab_test

Dosage a factor with 4 levels and 5% of missing values: from Dos 1 to dos 4

Smoking a covariate of 2 classes stored as a character and 10% of missing values: NO for non
smoker, YES otherwise

Age a numeric corresponding to the age of participants in years. This variable counts 5% of missing
values

Details

The purpose of the functions contained in this package is to predict the missing information on Yb1
and Yb2 in database A and database B using the Optimal Transportation Theory.

Missing information has been simulated to some covariates following a simple MCAR process.

Source

randomly generated

tab_test A simulated dataset to test the library

Description

A dataset of 10000 rows containing 3 covariables and 2 outcomes.

Usage

tab_test

Format

A data frame with 5000 rows and 6 variables:

ident identifier, 1 or 2

Y1 outcome 1 with 2 levels, observed for ident=1 and unobserved for ident=2

Y2 outcome 2 with 4 levels, observed for ident=2 and unobserved for ident=1

X1 covariate 1, integer

X2 covariate 2, integer

X3 covariate 3, integer

Source

randomly generated

transfo_dist 59

transfo_dist transfo_dist()

Description

This function prepares an overlayed database for data fusion according to the distance function
chosen to evaluate the proximities between units.

Usage

transfo_dist(
DB,
index_DB_Y_Z = 1:3,
quanti = NULL,
nominal = NULL,
ordinal = NULL,
logic = NULL,
convert_num = NULL,
convert_class = NULL,
prep_choice = "E",
info = 0.8

)

Arguments

DB a data.frame composed of exactly two overlayed databases with a column of
database identifier, two columns corresponding to a same information differently
encoded in the two databases and covariates. The order of the variables have no
importance.

index_DB_Y_Z a vector of exactly three integers. The first integer must correspond to the col-
umn index of the database identifier. The second integer corresponds to the in-
dex of the target variable in the first database while the third integer corresponds
to the index of column related to the target variable in the second database.

quanti the column indexes of all the quantitative variables (database identificatier and
target variables included) stored in a vector.

nominal the column indexes of all the nominal (not ordered) variables (DB identification
and target variables included) stored in a vector.

ordinal the column indexes of all the ordinal variables (DB identification and target
variables included) stored in a vector.

logic the column indexes of all the boolean variables stored in a vector.

convert_num the column indexes of the continuous (quantitative) variables to convert in or-
dered factors. All indexes declared in this argument must have been declared in
the argument quanti (no conversion by default).

60 transfo_dist

convert_class according to the argument convert_num, a vector indicating for each continuous
variable to convert the corresponding desired number of levels. If the length of
the argument convert_num exceeds 1 while the length of convert_class is
equal to 1 (only one integer), each discretization will count the same number of
levels.

prep_choice a character string corresponding to the distance function chosen between: the
euclidean distance ("E", by default), the Manhattan distance ("M"), the Gower
distance ("G"), the Hamming (also called binary) distance ("H"), and a dis-
tance computed from principal components of a factor analysis of mixed data
("FAMD").

info a ratio (between 0 and 1, 0.8 is the default value) that corresponds to the minimal
part of variability that must be taken into account by the remaining principal
components of the FAMD when this approach is required. This ratio will fix the
number of components that will be kept with this approach. When the argument
is set to 1, all the variability is considered.

Details

A. EXPECTED STRUCTURE FOR THE INPUT DATABASE

In input of this function, the expected database is the result of an overlay between two databases
A and B. This structure can be guaranteed using the specific outputs of the functions merge_dbs
or select_pred. Nevertheless, it is also possible to apply directly the function transfo_dist on
a raw database provided that a specific structure is respected in input. The overlayed database (A
placed on top of B) must count at least four columns (in an a unspecified order of appearance in the
database):

• A column indicating the database identifier (two classes or levels if factor: A and B, 1 and 2,
...)

• A column dedicated to the outcome (or target variable) of the first database and denoted Y for
example. This variable can be of categorical (nominal or ordinal factor) or continuous type.
Nevertheless, in this last case, a warning will appear and the variable will be automatically
converted in ordered factors as a prerequisite format of the database before using data fusion
algorithms.

• A column dedicated to the outcome (or target variable) of the second database and denoted
Z for example. As before, this variable can be of categorical (nominal or ordinal factor)
or continuous type, and the variable will be automatically converted in ordered factors as a
prerequisite format of the database before using data fusion algorithms.

• At least one shared variable (same encoding in the two databases). Incomplete information is
possible on shared covariates only with more than one shared covariate in the final database.

In this context, the two databases are overlayed and the information related to Y in the second
database must be missing as well as the information related to Z in the first one. The column in-
dexes related to the database identifier, Y and Z must be specified in this order in the argument
index_DB_Y_Z. Moreover, all column indexes (including those related to identifier and target vari-
ables Y and Z) of the overlayed database (DB) must be declared once (and only once), among the
arguments quanti, nominal, ordinal, and logic.

B. TRANSFORMATIONS OF CONTINUOUS COVARIATES

transfo_dist 61

Because some algorithms dedicated to solving recoding problems like JOINT and R-JOINT (see (1)
and/or the documentation of OT_joint) requires the use of no continuous covariates, the function
transfo_dist integrates in is syntax a process dedicated to the categorization of continuous vari-
ables. For this, it is necessary to rigorously fill in the arguments convert_num and convert_class.
The first one specifies the indexes of continuous variables to transform in ordered factors while the
second one assigns the corresponding desired number of levels. Only covariates should be trans-
formed (not outcomes) and missing informations are not taken into account for the transformations.
Notice that all the indexes informed in the argument convert_num must also be informed in the
argument quanti.

C. TRANSFORMATIONS ON THE DATABASE ACCORDING TO THE CHOSEN DISTANCE
FUNCTION

These necessary transformations are related to the type of each covariate. It depends on the distance
function chosen by user in the prep_choice argument.

1. For the Euclidean ("E") and Manhattan ("M") distances (see (2) and (3)): all the remaining
continuous variables are standardized. The related recoding to a boolean variable is 1 for TRUE and
0 for FALSE. The recoding of a nominal variable of k classes corresponds to its related disjunctive
table (of (k-1) binary variables)). The ordinal variables are all converted to numeric variables (please
take care that the order of the classes of each of these variables is well specified at the beginning).

2. For the Hamming ("H") distance (see (2) and (3)): all the continuous variables must be trans-
formed beforehand in categorical forms using the internal process described in section B or via
another external approach. The boolean variables are all converted in ordinal forms and then turned
into binaries. The recoding for nominal or ordinal variable of k classes corresponds to its related
disjunctive table (i.e (k-1) binary variables)).

3. For the Gower ("G") distance (see (4)): all covariates remain unchanged

4. Using the principal components from a factor analysis for mixed data (FAMD (5)): a factor
analysis for mixed data is applied on the covariates of the database and a specific number of the
related principal components is remained (depending on the minimal part of variability explained
by the covariates that the user wishes to keep by varying the info option). The function integrates
in its syntax the function FAMD of the package FactoMiner (6) using default parameters. After
this step, the covariates are replaced by the remaining principal components of the FAMD, and each
value corresponds to coordinates linked to each component. Please notice that this method supposed
complete covariates in input, nevertheless in presence of incomplete covariates, each corresponding
rows will be dropped from the study, a warning will appear and the number of remaining rows will
be indicated.

Value

A data.frame whose covariates have been transformed according to the distance function or ap-
proach (for FAMD) chosen. The columns of the data.frame could have been reordered so that the
database identifier, Y and Z correspond to the first three columns respectively. Moreover the order
of rows remains unchanged during the process.

Author(s)

Gregory Guernec

<otrecod.pkg@gmail.com>

62 transfo_dist

References

1. Gares V, Omer J (2020) Regularized optimal transport of covariates and outcomes in data re-
coding. Journal of the American Statistical Association. doi: 10.1080/01621459.2020.1775615

2. Anderberg, M.R. (1973). Cluster analysis for applications, 359 pp., Academic Press, New
York, NY, USA.

3. Borg, I. and Groenen, P. (1997). Modern Multidimensional Scaling. Theory and Applications.
Springer.

4. Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics,
27, 623–637.

5. Pages J. (2004). Analyse factorielle de donnees mixtes. Revue Statistique Appliquee. LII (4).
pp. 93-111.

6. Lê S, Josse J, Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis.
Journal of Statistical Software. 25(1). pp. 1-18.

See Also

transfo_quali,merge_dbs

Examples

Using the table simu_data:

data(simu_data)

1. the Euclidean distance (same output with Manhattan distance),
eucl1 <- transfo_dist(simu_data,

quanti = c(3, 8), nominal = c(1, 4:5, 7),
ordinal = c(2, 6), logic = NULL, prep_choice = "E"

)
Here Yb2 was stored in numeric: It has been automatically converted in factor

You can also convert beforehand Yb2 in ordered factor by example:
sim_data <- simu_data
sim_data$Yb2 <- as.ordered(sim_data$Yb2)
eucl2 <- transfo_dist(sim_data,

quanti = 8, nominal = c(1, 4:5, 7),
ordinal = c(2, 3, 6), logic = NULL, prep_choice = "E"

)

2. The Euclidean distance generated on principal components
by a factor analysis for mixed data (FAMD):
eucl_famd <- transfo_dist(simu_data,

quanti = c(3, 8), nominal = c(1, 4:5, 7),
ordinal = c(2, 6), logic = NULL, prep_choice = "FAMD"

)

Please notice that this method works only with rows that have complete
information on covariates.

https://doi.org/10.1080/01621459.2020.1775615

transfo_quali 63

3. The Gower distance for mixed data:
gow1 <- transfo_dist(simu_data,

quanti = c(3, 8), nominal = c(1, 4:5, 7),
ordinal = c(2, 6), logic = NULL, prep_choice = "G"

)

4. The Hamming distance:
Here the quanti option could only contain indexes related to targets.
Column indexes related to potential binary covariates or covariates with
finite number of values must be include in the ordinal option.
So in simu_data, the discretization of the variable age is required (index=8),
using the convert_num and convert_class arguments (for tertiles = 3):

ham1 <- transfo_dist(simu_data,
quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
convert_num = 8, convert_class = 3, prep_choice = "H"

)

This function works whatever the order of your columns in your database:
Suppose that we re-order columns in simu_data:
simu_data2 <- simu_data[, c(2, 4:7, 3, 8, 1)]

By changing the corresponding indexes in the index_DB_Y_Z argument,
we observe the desired output:
eucl3 <- transfo_dist(simu_data2,

index_DB_Y_Z = c(8, 1, 6), quanti = 6:7, nominal = c(2:3, 5, 8),
ordinal = c(1, 4), logic = NULL, prep_choice = "E"

)

transfo_quali transfo_quali()

Description

A function that transforms a factor of n(>1) levels in (n-1) binary variables.

Usage

transfo_quali(x, labx = NULL)

Arguments

x a factor

labx a new label for the generated binary variables (By default the name of the factor
is conserved)

64 transfo_target

Value

A matrix of (n-1) binary variables

Author(s)

Gregory Guernec

<otrecod.pkg@gmail.com>

Examples

treat <- as.factor(c(rep("A", 10), rep("B", 15), rep("C", 12)))
treat_bin <- transfo_quali(treat, "trt")

transfo_target transfo_target()

Description

This function prepares the encoding of the target variable before running an algorithm using optimal
transportation theory.

Usage

transfo_target(z, levels_order = NULL)

Arguments

z a factor variable (ordered or not). A variable of another type will be, by default,
convert to a factor.

levels_order a vector corresponding to the values of the levels of z. When the target is ordi-
nal, the levels can be sorted by ascending order. By default, the initial order is
remained.

Details

The function transfo_target is an intermediate function direcly implemented in the functions
OT_outcome and OT_joint, two functions dedicated to data fusion (see (1) and (2) for details).
Nevertheless, this function can also be used separately to assist user in the conversion of a target
variable (outcome) according to the following rules:

• A character variable is converted in factor if the argument levels_order is set to NULL. In
this case, the levels of the factor are assigned by order of appearance in the database.

• A character variable is converted in ordered factor if the argument levels_order differs from
NULL. In this case, the levels of the factor correspond to those assigned in the argument.

transfo_target 65

• A factor stays unchanged if the argument levels_order is set to NULL. Otherwise the
factor is converted in ordered factor and the levels are ordered according to the argument
levels_order.

• A numeric variable, discrete or continuous is converted in factor if the argument levels_order
is set to NULL, and the related levels are the values assigned in ascending order.

• A numeric variable, discrete or continuous is converted in ordered factor if the argument
levels_order differed from NULL, and the related levels correspond to those assigned in
the argument.

Value

The list returned is:

NEW an object of class factor of the same length as z

LEVELS_NEW the levels (ordered or not) retained for z

Author(s)

Gregory Guernec

<otrecod.pkg@gmail.com>

References

1. Gares V, Dimeglio C, Guernec G, Fantin F, Lepage B, Korosok MR, savy N (2019). On the
use of optimal transportation theory to recode variables and application to database merging.
The International Journal of Biostatistics. Volume 16, Issue 1, 20180106, eISSN 1557-4679.
doi:10.1515/ijb-2018-0106

2. Gares V, Omer J (2020) Regularized optimal transport of covariates and outcomes in data re-
coding. Journal of the American Statistical Association. doi: 10.1080/01621459.2020.1775615

See Also

compare_lists

Examples

y <- rnorm(100, 30, 10)
ynew1 <- transfo_target(y)

newlev <- unique(as.integer(y))
ynew2 <- transfo_target(y, levels_order = newlev)
newlev2 <- newlev[-1]
ynew3 <- transfo_target(y, levels_order = newlev2)

outco <- c(rep("A", 25), rep("B", 50), rep("C", 25))
outco_new1 <- transfo_target(outco, levels_order = c("B", "C", "A"))
outco_new2 <- transfo_target(outco, levels_order = c("E", "C", "A", "F"))
outco_new3 <- transfo_target(outco)

https://doi.org/10.1080/01621459.2020.1775615

66 verif_OT

outco2 <- c(rep("A", 25), NA, rep("B", 50), rep("C", 25), NA, NA)
gg <- transfo_target(outco2)
hh <- transfo_target(outco2, levels_order = c("B", "C", "A"))

verif_OT verif_OT()

Description

This function proposes post-process verifications after data fusion by optimal transportation algo-
rithms.

Usage

verif_OT(
ot_out,
group.class = FALSE,
ordinal = TRUE,
stab.prob = FALSE,
min.neigb = 1

)

Arguments

ot_out an otres object from OT_outcome or OT_joint

group.class a boolean indicating if the results related to the proximity between outcomes by
grouping levels are requested in output (FALSE by default).

ordinal a boolean that indicates if Y and Z are ordinal (TRUE by default) or not. This ar-
gument is only useful in the context of groups of levels (group.class=TRUE).

stab.prob a boolean indicating if the results related to the stability of the algorithm are
requested in output (FALSE by default).

min.neigb a value indicating the minimal required number of neighbors to consider in the
estimation of stability (1 by default).

Details

In a context of data fusion, where information from a same target population is summarized via
two specific variables Y and Z (two ordinal or nominal factors with different number of levels nY
and nZ), never jointly observed and respectively stored in two distinct databases A and B, Optimal
Transportation (OT) algorithms (see the models OUTCOME, R_OUTCOME, JOINT, and R_JOINT of the
reference (2) for more details) propose methods for the recoding of Y in B and/or Z in A. Outputs
from the functions OT_outcome and OT_joint so provides the related predictions to Y in B and/or
Z in A, and from these results, the function verif_OT provides a set of tools (optional or not,
depending on the choices done by user in input) to estimate:

1. the association between Y and Z after recoding

verif_OT 67

2. the similarities between observed and predicted distributions

3. the stability of the predictions proposed by the algorithm

A. PAIRWISE ASSOCIATION BETWEEN Y AND Z

The first step uses standard criterions (Cramer’s V, and Spearman’s rank correlation coefficient) to
evaluate associations between two ordinal variables in both databases or in only one database. When
the argument group.class = TRUE, these informations can be completed by those provided by the
function error_group, which is directly integrate in the function verif_OT. Assuming that nY >
nZ , and that one of the two scales of Y or Z is unknown, this function gives additional informations
about the potential link between the levels of the unknown scale. The function proceeds to this result
in two steps. Firsty, error_group groups combinations of modalities of Y to build all possible
variables Y ′ verifying nY ′ = nZ . Secondly, the function studies the fluctuations in the association
of Z with each new variable Y ′ by using adapted comparisons criterions (see the documentation of
error_group for more details). If grouping successive classes of Y leads to an improvement in the
initial association between Y and Z then it is possible to conclude in favor of an ordinal coding for
Y (rather than nominal) but also to emphasize the consistency in the predictions proposed by the
algorithm of fusion.

B. SIMILARITIES BETWEEN OBSERVED AND PREDICTED DISTRIBUTIONS

When the predictions of Y in B and/or Z in A are available in the datab argument, the similarities
between the observed and predicted probabilistic distributions of Y and/or Z are quantified from
the Hellinger distance (see (1)). This measure varies between 0 and 1: a value of 0 corresponds to a
perfect similarity while a value close to 1 (the maximum) indicates a great dissimilarity. Using this
distance, two distributions will be considered as close as soon as the observed measure will be less
than 0.05.

C. STABILITY OF THE PREDICTIONS

These results are based on the decision rule which defines the stability of an algorithm in A (or B)
as its average ability to assign a same prediction of Z (or Y) to individuals that have a same given
profile of covariates X and a same given level of Y (or Z respectively).

Assuming that the missing information of Z in base A was predicted from an OT algorithm (the
reasoning will be identical with the prediction of Y in B, see (2) and (3) for more details), the
function verif_OT uses the conditional probabilities stored in the object estimatorZA (see outputs
of the functions OT_outcome and OT_joint) which contains the estimates of all the conditional
probabilities of Z in A, given a profile of covariates x and given a level of Y = y. Indeed, each
individual (or row) from A, is associated with a conditional probability P (Z = z|Y = y,X = x)
and averaging all the corresponding estimates can provide an indicator of the predictions stability.

The function OT_joint provides the individual predictions for subject i: ẑi, i = 1, . . . , nA accord-
ing to the the maximum a posteriori rule:

ẑi = argmaxz∈ZP (Z = z|Y = yi, X = xi)

The function OT_outcome directly deduces the individual predictions from the probablities P (Z =
z|Y = y,X = x) computed in the second part of the algorithm (see (3)).

It is nevertheless common that conditional probabilities are estimated from too rare covariates pro-
files to be considered as a reliable estimate of the reality. In this context, the use of trimmed means
and standard deviances is suggested by removing the corresponding probabilities from the final
computation. In this way, the function provides in output a table (eff.neig object) that provides

68 verif_OT

the frequency of these critical probabilities that must help the user to choose. According to this
table, a minimal number of profiles can be imposed for a conditional probability to be part of the
final computation by filling in the min.neigb argument.

Notice that these results are optional and available only if the argument stab.prob = TRUE. When
the predictions of Z in A and Y in B are available, the function verif_OT provides in output, global
results and results by database. The res.stab table can produce NA with OT_outcome output in
presence of incomplete shared variables: this problem appears when the prox.dist argument is set
to 0 and can be simply solved by increasing this value.

Value

A list of 7 objects is returned:

nb.profil the number of profiles of covariates

conf.mat the global confusion matrix between Y and Z

res.prox a summary table related to the association measures between Y and Z

res.grp a summary table related to the study of the proximity of Y and Z using group
of levels. Only if the group.class argument is set to TRUE.

hell Hellinger distances between observed and predicted distributions

eff.neig a table which corresponds to a count of conditional probabilities according to
the number of neighbors used in their computation (only the first ten values)

res.stab a summary table related to the stability of the algorithm

Author(s)

Gregory Guernec

<otrecod.pkg@gmail.com>

References

1. Liese F, Miescke K-J. (2008). Statistical Decision Theory: Estimation, Testing, and Selection.
Springer

2. Gares V, Dimeglio C, Guernec G, Fantin F, Lepage B, Korosok MR, savy N (2019). On the
use of optimal transportation theory to recode variables and application to database merging.
The International Journal of Biostatistics. Volume 16, Issue 1, 20180106, eISSN 1557-4679.
doi:10.1515/ijb-2018-0106

3. Gares V, Omer J (2020) Regularized optimal transport of covariates and outcomes in data re-
coding. Journal of the American Statistical Association. doi: 10.1080/01621459.2020.1775615

See Also

OT_outcome, OT_joint, proxim_dist, error_group

https://doi.org/10.1080/01621459.2020.1775615

verif_OT 69

Examples

Example 1
#-----
- Using the data simu_data
- Studying the proximity between Y and Z using standard criterions
- When Y and Z are predicted in B and A respectively
- Using an outcome model (individual assignment with knn)
#-----
data(simu_data)
outc1 <- OT_outcome(simu_data,

quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
dist.choice = "G", percent.knn = 0.90, maxrelax = 0,
convert.num = 8, convert.class = 3,
indiv.method = "sequential", which.DB = "BOTH", prox.dist = 0.30

)

verif_outc1 <- verif_OT(outc1)
verif_outc1

Example 2
#-----
- Using the data simu_data
- Studying the proximity between Y and Z using standard criterions and studying
associations by grouping levels of Z
- When only Y is predicted in B
- Tolerated distance between a subject and a profile: 0.30 * distance max
- Using an outcome model (individual assignment with knn)
#-----

data(simu_data)
outc2 <- OT_outcome(simu_data,

quanti = c(3, 8), nominal = c(1, 4:5, 7), ordinal = c(2, 6),
dist.choice = "G", percent.knn = 0.90, maxrelax = 0, prox.dist = 0.3,
convert.num = 8, convert.class = 3,
indiv.method = "sequential", which.DB = "B"

)

verif_outc2 <- verif_OT(outc2, group.class = TRUE, ordinal = TRUE)
verif_outc2

Example 3
#-----
- Using the data simu_data
- Studying the proximity between Y and Z using standard criterions and studying
associations by grouping levels of Z
- Studying the stability of the conditional probabilities
- When Y and Z are predicted in B and A respectively
- Using an outcome model (individual assignment with knn)

70 verif_OT

#-----

verif_outc2b <- verif_OT(outc2, group.class = TRUE, ordinal = TRUE, stab.prob = TRUE, min.neigb = 5)
verif_outc2b

Index

∗ datasets
api29, 2
api35, 3
ncds_14, 27
ncds_5, 28
simu_data, 57
tab_test, 58

api, 2–4
api29, 2
api35, 3
avg_dist_closest, 4, 16, 19, 20, 34, 41

cforest, 53
compare_lists, 7, 65

dist, 11, 46

error_group, 8, 67, 68

FAMD, 61

gower.dist, 46

ham, 10

imput_cov, 12, 25, 32, 45, 48
imputeFAMD, 13
indiv_grp_closest, 14, 19, 20, 38, 41
indiv_grp_optimal, 18, 38, 41

merge_dbs, 22, 31, 32, 34, 39, 45, 48, 52, 60,
62

mice, 13

ncds_14, 27
ncds_5, 28

OT (OT_outcome), 35
OT_joint, 29, 45, 52, 55, 61, 64, 66–68
OT_outcome, 15, 16, 19, 31, 34, 35, 45, 64,

66–68

ot_outcome (OT_outcome), 35

power_set, 43
proxim_dist, 5, 6, 15, 16, 18–20, 34, 41, 44,

68

select_pred, 25, 49, 60
simu_data, 45, 48, 52, 55, 57

tab_test, 52, 55, 58
transfo_dist, 41, 44, 45, 48, 59
transfo_quali, 45, 62, 63
transfo_target, 25, 64

varimp, 53
verif_OT, 9, 66

71

	api29
	api35
	avg_dist_closest
	compare_lists
	error_group
	ham
	imput_cov
	indiv_grp_closest
	indiv_grp_optimal
	merge_dbs
	ncds_14
	ncds_5
	OT_joint
	OT_outcome
	power_set
	proxim_dist
	select_pred
	simu_data
	tab_test
	transfo_dist
	transfo_quali
	transfo_target
	verif_OT
	Index

