
R Package SpiceFP: a Sparse and Structured Procedure

to Identify Combined Effects of Functional Predictors

Girault Gnanguenon Guesse
MISTEA INRAE

Université Montpellier

Patrice Loisel
MISTEA INRAE

Université Montpellier

Bénédicte Fontez
MISTEA Institut Agro
Université Montpellier

Thierry Simonneau
LEPSE INRAE

Université Montpellier

Nadine Hilgert
MISTEA INRAE

Université Montpellier

Isabelle Sanchez
MISTEA INRAE

Université Montpellier

Abstract

The R package named SpiceFP implements a scalar-on-function approach whose main
objective is to model the joint influence of two functional predictors while providing inter-
pretable coefficients. The originality is to partition the range of values of each functional
predictor into intervals and then to create a contingency table (defining a partition).
Several candidate partitions are defined this way, depending on the choice of the bin
size. Each candidate partition forms a candidate design matrix which is used in a linear
multiple regression model. A contiguity constraint was added to manage possible colin-
earity. Identification is performed through a Generalized Fused Lasso. The selection of
the best candidate and of its relative regression coefficients is achieved by minimizing an
information criteria. After a brief description of the approach, we present the different
functionalities available in the package and then illustrate it on an example involving real
observations.

Keywords: Joint influence, functional predictors, interpretable coefficients, Generalized Fused
Lasso, R.

1. Introduction

The development of information technologies, observed over the last decades, has not occurred
without some changes in the various data collected. The flow of information, sometimes
obtained continuously, generates new types of data (curves, images, surfaces, etc.). In order
to extract knowledge from these data or to use them in the prediction of a variable of interest,
it is necessary to propose new statistical solutions or to adapt existing ones. In this context,
the regression with functional data is commonly used (Ramsay and Silverman (2005)). In
most production systems (industry, agronomy, health etc.), the variable of interest is observed
at the final point (as the yield, at the end of the process). This final value is conditioned and
impacted by past values of covariables we are able now to observe continuously (during the
production process). This context is usually modeled with ’scalar-on-function’ approaches,
Reiss, Goldsmith, Shang, and Ogden (2017); Ma, Xiao, Liu, and Lindquist (2019). In a



2 SpiceFP: Exploratory Scalar-to-Function Procedure

different context, the development of available spatialised data (from medical imagery, GPS,
image from satellite or drone etc.) have led to specific approaches for ’scalar-on-image’ or
’spatial functional’ regressions like (Goldsmith, Bobb, Crainiceanu, Caffo, and Reich (2011),
Guillas and Lai (2010). Both contexts offer new tools for multiple functional regression,
we can cite as an example FAME (Functional Adaptive Model Estimation) from James and
Silverman (2005). Most of the linear or generalized linear modeling also included a penalized
estimation like Marx and Eilers (2005) or Gertheiss, Maity, and Staicu (2013) for examples.
Some R packages were developed for multivariate functional models.

According to Usset, Staicu, and Maity (2016), ’a common assumption made by all the above
mentioned models is that the effects of the functional predictors are additive, thus any in-
teraction between the functional covariates is not taken into account’. Ignoring interaction
effect in linear models may lead to biased estimation and incorrect conclusions. Therefore
Usset et al. (2016) proposed an interaction model for functional regression. Their proposi-
tion is a generalization of what is usually done in multiple linear regression with a product
(convolution) between functional predictors to model the interaction term. Another way to
account for interaction is to define combinations of ranges of functional predictors values and
identify the combinations that have an impact on the variable of interest. This way offers an
alternative to the scalar-on-function regression that is more interpretable. The notion of in-
terpretability for functional linear regression has grown up with James, Wang, and Zhu (2009)
(R code available). A Bayesian extension was proposed by Grollemund, Abraham, Baragatti,
and Pudlo (2019) with the R package bliss available on CRAN. The ’scalar-on-function’ mul-
tiple linear or generalized linear regressions are implemented in R packages (FDA, funcreg
or refund), no identification of interaction terms is provided. The package SpiceFP offers to
fill this gap. The full description of the method is available in Gnanguenon Guesse, Loisel,
Fontez, Simonneau, and Hilgert (202X).

The originality of the Sparse and Structured Procedure to Identify Combined Effects of Func-
tional Predictors (SPICEFP) is to partition the range of values of each functional predictor
into intervals (with bins of equal size). The idea is to transform each functional variable into
a categorical variable and then to create a contingency table (which is in fact a partition of
the predictors’ observation domain). It is assumed that only the time spent in a combined
class of intervals affects the variable of interest. This assumption is supported by the idea of
a certain kind of independence and stationarity during the production process: same causes,
same effects, not conditioned by the past. Several candidate partitions are defined this way,
depending on the choice of the bin size. Each candidate partition forms a candidate design
matrix which is used in a linear multiple regression model. A contiguity constraint was added
between adjacent class intervals to manage possible colinearity. Identification is performed
through a Generalized Fused Lasso using each candidate matrix as input variables. The selec-
tion of the best candidate and of its relative regression coefficients is achieved by minimizing
an information criteria.

In a nutshell, the package SpiceFP offers a new functional approach whose main objective is
the interpretability of the result. Under the hypothesis of combined influence of univariate
functional predictors on a scalar response, the SPICEFP approach provides a surface (support)
describing areas of influence and non-influence.

This paper is organised as follows. Section 2 briefly presents the methodology of this approach.
The reader may refer to Gnanguenon Guesse et al. (202X) for an in-depth presentation of the



Girault Gnanguenon Guesse, Patrice Loisel, Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert, Isabelle Sanchez3

method. Some examples of use are presented in section 4.

2. Presentation of the approach

The SPICEFP algorithm is based on a transformation of functional variables into categorical
variables by defining joint modalities from which we derived a collection of multiple regression
models, where the regressors are the frequencies associated to the joint modalities. Regressors
are candidate matrices under contiguity constraints. Generalized Fused Lasso regressions are
performed in order to identify the best model. The SpiceFP package provides a set of easy-to-
use functions to implement the algorithm on a dataset. To combine our exploration objectives
with technical constraints (such as a potentially small amount of data, for example), we also
propose an iterative extension of the SPICEFP algorithm, which explores a larger space of
solutions, possibly at the cost of a slight overestimation.

The 4 main steps of the procedure are described in this section:

1. The functional variables A and B are transformed into categorical variables which re-
quires the construction of a contingency table (counting t) at the scale of each individual
i, i = 1, ..., n, see figure 1. The information contained in the n contingency tables is
used to construct a matrix of predictors with n rows.

2. Generalized Lasso Regression is used to estimate the coefficients of the joint modalities.
The generalized version allows a constraint on the model estimation to enforce continuity
between adjacent joint modalities.

3. Model selection is done with respect to Akaike or Bayesian information criteria

4. The iterative step, optional, relies on the residuals: once an iteration is completed, the
residuals are used as the response variable in a new iteration.

The overall approach is outlined in the remainder of this section.

2.1. Transformation of functional predictors into a set of candidate matrices

For n statistical individuals, consider the samples of two explanatory functional variables A
and B expressed as (Ai)i=1,...,n and (Bi)i=1,...,n, where i stands for an individual and (yi)i=1,...,n

the sample of the corresponding scalar response variable y.

Both A and B are observed on the same set T of fixed observation variables. We note Ai(t),
respectively Bi(t), the observations of A, respectively B, at t ∈ T (t can be time, wavelength
or other observation variable) for an individual i.

Contingency table per individual

Using nA + 1 (resp. nB + 1) breaks, the explanatory variables Ai (resp. Bi) are partitioned
in nA (resp. nB) class intervals, the same for all i, according to a linear scale (equidistant
breaks). These breaks, denoted LA(v), v = 1, . . . , nA + 1 (resp. LB(w), w = 1, . . . , nB + 1)
are computed as follows:

LA(v) = A+
v − 1

nA

(
Ā − A

)
, v = 1, . . . , nA + 1, (1)



4 SpiceFP: Exploratory Scalar-to-Function Procedure

Figure 1: Contingency table per individual

with A ∈ R and Ā ∈ R the minimum and maximum of the observed values of (Ai)i. The
breaks LB(w) can equivalently be obtained by using B ∈ R and B̄ ∈ R the minimum and
maximum of the observed values of (B)i. The class intervals obtained for partitioning the
(A)i are IA(v) = [LA(v), LA(v + 1)[, v = 1, . . . , nA and those for partitioning the (B)i are
IB(w) = [LB(w), LB(w + 1)[, w = 1, . . . , nB. The numbers of class intervals nA and nB have
to be set to compute these breaks. Let u = (nA, nB) denote the partition vector. For all
couples (Ai,Bi), we obtain the frequency bivariate histogram as a contingency table Cu

i , of
dimension nA × nB, whose components Cu

i,(v,w) are obtained through:

Cu
i,(v,w) =

∑

t∈T
1Ai(t)∈IuA(v), Bi(t)∈IuB(w) = Card {t ∈ T |Ai(t) ∈ IuA(v),Bi(t) ∈ IuB(w)}, (2)

for all v = 1, . . . , nA, w = 1, . . . , nB and each u = (nA, nB), with
nA∑
v=1

nB∑
w=1

Cu
i,(v,w) = Card(T ).

From a theoretical point of view, when t is a time step, Cu
i,(v,w) represents a discrete approx-

imation of the density of the time spent by the individual i with variable Ai in LA(v) and
variable Bi in LB(w). In practice, it is the number of times that the observations of Ai and
Bi are at the same time in IuA(v) × IuB(w). These combinations will be referred to as joint
modalities hereafter.

Predictor and penalty matrices per partition vector

For each fixed partition vector u, a matrix of predictors Xu is obtained by vectorization
(stacking column by column) and transposition of the contingency tables:

Xu
i = tV ect(Cu

i ) , Xu
i ∈ RnAnB . (3)

Each row Xu
i of Xu contains all the information relative to one individual and each column

those relative to one joint modality. Xu has n rows and nA × nB columns. For each par-
tition vector u, Xu is called a candidate matrix. To this matrix, we add the information



Girault Gnanguenon Guesse, Patrice Loisel, Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert, Isabelle Sanchez5

about the contiguity constraints between the joint modalities by creating a graph Gu(V u, Eu)
where V u represents the columns (new variables) of the candidate matrix Xu and Eu the
set of edges connecting two close joint modalities. The definition proposed by default in the
SpiceFP package is that two joint modalities are said to be close if the classes following the
variable A (indexed by v) or (exclusive) the classes following the variable B (indexed by w)
are consecutive. The package offers the user the possibility to define the proximity between
the joint modalities in a different way.

2.2. Models and estimation

The model under SPICEFP is defined, for each partition u and each individual i, by:

yi = Xu
i β

u + εi, (4)

where Xu
i is given in Equation (3), βu

(v,w) is the coefficient to be estimated on the 2D interval

(IuA(v)× IuB(w)) and εi is an i.i.d. Gaussian error. Investigating the suitability of a partition
vector u requires the construction of a matrix of predictors Xu associated to a graph Gu, the
estimation of the coefficients in (4) and finally the evaluation of the goodness of fit of the
model related to u.

Set of candidate matrices to be evaluated

There will be as many candidate matrices as partition vectors to investigate. The set of all
partition vectors is defined from the set of possible values of each parameter involved in u
(nA and nB in the default case, as discussed in the present section). For example, if we set 15
possible values for nA and 20 values for nB, we will have 300 partition vectors to investigate
or 300 candidate matrices.

Fitting of all candidate models

The estimation issue here is similar to a well-known topic in statistics called the scalar-on-
image regression Kang, Reich, and Staicu (2018); Li, Zhang, Wang, Gonzalez, Maresh, and
Coan (2015). The objective is to control the smoothness of the non-zero estimated coefficients.
In the present case, the “image” (2D image) is a bivariate representation (indexed by v and w)
of both functional variables. To estimate coefficients of scalar-on-image regression, you can
choose among Bayesian approaches Goldsmith, Huang, and Crainiceanu (2014), total variation
penalizing approaches Wang, Zhu, and for the Alzheimer’s Disease Neuroimaging Initiative
(2017) or approaches that take L1 regularization or neighborhood into account, as Li, Sun,
Deng, Zhang, Wang, and Jin (2020). We selected the Generalized Fused Lasso (GFL) Xin,
Kawahara, Wang, and Gao (2014) which promotes smoothness and sparsity over neighboring
variables by using constraints on the parameter differences. In SPICEFP, the coefficients of
this Generalized Fused Lasso are estimated using the framework of the generalized Lasso
model, introduced by Tibshirani and Taylor (2011) as an encapsulation of statistical models
using the L1 norm to impose additional constraints. This estimator is as follows, for a fixed
partition vector u:

β̂u,γ(λ) = argmin
β∈RnA nB

1

2
||y −Xuβ||22 + λ||Du,γβ||1, (5)

where :



6 SpiceFP: Exploratory Scalar-to-Function Procedure

• y = t(y1, y2, . . . , yn) ∈ Rn is the response vector.

• Xu ∈ Rn×nAnB is the matrix of predictors defined in Equation (3).

• λ ∈ R is a penalty parameter that controls the smoothness of the coefficients.

• γ ∈ R+ is a ratio that controls the sparsity among the coefficients. If γ = 0, there is no
sparsity i.e pure fusion of the coefficients. The higher its value, the more parsimonious
the model is.

• β̂u,γ(λ) ∈ RnAnB is the vector of estimated coefficients for fixed values of u, γ and λ.

• Du,γ =



Du,f1

Du,f2

Du,γ,p


 ∈ R(3nAnB−nA−nB)×nAnB is a specified penalty matrix for fixed values

of u and γ with: ((v, w)(v′, w′) defines one of the edge in Eu for the graph Gu)

Du,f1
(v,w)(v′,w′) =





1 if (v′, w′) = (v + 1, w)

−1 if (v′, w′) = (v, w) and v < nA

0 if not

Du,f2
(v,w)(v′,w′) =





1 if (v′, w′) = (v, w + 1)

−1 if (v′, w′) = (v, w) and w < nB

0 if not

Du,γ,p = γ.InA.nB

(6)

where γ ≥ 0 and InA.nB is the identity matrix. Du,f1 and Du,f2 are relative to the
smoothness of the coefficients following both functional variables and Du,γ,p is relative
to sparsity among them.

2.3. Selection among the candidate models

Let’s nu be the number of candidate matrices, Γ the set of γ values, and nλ the number of
λ values. We are thus interested in the best models obtained from the nu × Card(Γ) × nλ

estimated models through a model selection procedure. Table 1 presents three criteria that
are provided in the package. Once the criteria are computed, the best candidate matrix
X û according to a specified criterion is the one involved in the best model identified by this
criterion.

These criteria require the computation of degrees of freedom. A theorem is proposed by Tib-
shirani and Taylor (2012) to compute the degrees of freedom in Lasso problems. The computa-
tion of the degree of freedom for the Generalized Fused Lasso is presented in Gnanguenon Guesse
et al. (202X). Its value is equivalent to the number of sets of indexes of non zero β̂u,γ

v,w that
are linked together via the Du,γ matrix (6) and that all share the same real value. We will



Girault Gnanguenon Guesse, Patrice Loisel, Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert, Isabelle Sanchez7

Table 1: Criteria used to select a model.
Those criteria needs the computation of the Residual Sum of Squares RSS = ‖y −
Xuβ̂u,γ(λ)‖22, where Xu is a candidate matrix, β̂u,γ(λ) its estimated coefficients, df the degree
of freedom and where σ2 is assumed to be the known variance of y.
Criteria Formula

Akaike Information Criterion Akaike (1973) AIC = n log(2πσ2) +
RSS

σ2
+ 2df

Bayesian Information Criterion Schwarz (1978) BIC = n log(2πσ2) +
RSS

σ2
+ log(n)df

Mallows’s Cp Mallows (1973) Cp = RSS + 2σ2df

refer to these sets as connected components. In other words, a connected component is a set
of joint modalities linked by Du,γ and having a common influence on the response variable.

The criteria presented in Table 1 also require the knowledge of σ2, the variance of y. Since
the variance must remain the same for all the models to be compared, we decided to estimate
it by the empirical variance of y: σ̂2 = 1

n−1 ||y − y||22. It’s a biased estimator of σ2, but this
bias remains fixed for all models compared Hirose, Tateishi, and Konishi (2013a). Such an
estimator may lead to an overestimation of the variance, which penalizes the introduction
of new coefficients in the model. This bias can be partly offset by an iterative approach.
Therefore, we set up an iterative extension where the residuals are used as a new response
variable and so on, until stopping conditions are verified.

2.4. An optional iterative extension

To capture all potential non-zero coefficients, one should take a fine partition with values of
nA and nB large enough. This could imply a very low or even zero number of points in the
joint class intervals (making the method ineffective) and prohibitively long computation times
Mairal and Yu (2012). As a trade off between thinness and work-ability we chose to develop
an iterative approach to explore a large space of solutions (that allows addition of different
thinness of partition).

After identifying X û at one iteration, the residuals of the best model according to the same
criterion may be computed and used as response variable at a next iteration. The iterative
process is stopped when the vector of estimated coefficients is the null vector, or when the
maximum number K of iterations is reached. The final model is the sum of all the models
estimated at each iteration.

2.5. Sum up

The figure 2 illustrates the overall approach.

The input data are the functional explanatory variables Ai and Bi discretized on a grid T and
a response variable yi with i = 1, . . . , n. Other elements are also required: Γ, a set of positive
reals representing γ ratios of regularization parameters, UA and UB the sets of numbers of
class intervals nA and nB, nλ the selected number of pairs (among Nλ) (λ, β̂u,γ(λ)), the
information criterion to be used, and K the maximum number of iterations to explore. The



8 SpiceFP: Exploratory Scalar-to-Function Procedure

Figure 2: Summary diagram of the SPICEFP approach.



Girault Gnanguenon Guesse, Patrice Loisel, Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert, Isabelle Sanchez9

nλ values of λ are chosen equally spaced on the log scale (see Genlasso package Arnold and
Tibshirani (2019)).

SPICEFP constructs for each couple (u, γ), a matrix of explanatory variables Xu and a penalty
matrix Du,γ . This first step is performed only once and the set of candidate explanatory
matrices remains unchanged. For each candidate matrix Xu a solution path (λ, β̂u,γ(λ)) is
obtained from the second step of the algorithm. Once the criterion Critu,γe associated with
each model is computed, the optimal triplet (û, γ̂, ê) is the argument that minimizes Critu,γe ,

where e is the index of the solution path-coefficients (λe, β̂
u,γ
e ). X û, Dû,γ̂ and β̂û,γ̂

ê respectively
represent the optimal matrices of the explanatory, penalty and coefficient variables.

At each iteration k, we denote uk = û and βk = β̂û,γ̂
ê . SPICEFP then checks if the selected

coefficients according to the criterion Critu,γe correspond to a zero vector or if the maximum
number of iterations K is reached. The algorithm is stopped when at least one of these
conditions is verified. When none of these conditions are verified, the residuals of the optimal
model are computed and used as a response variable at the next iteration of the algorithm.

The final prediction is the sum of all the predictions obtained at each iteration: ŷ =
∑k∗

k=1X
uk
βk,

where k∗ is the final number of iterations.

We remark that each vector βk at each iteration may have different length dim(uk).

3. Implementation in R

The SPICEFP implementation in R follows the S3 methods. The main function spicefp allows
to execute all the approach and returns estimated coefficients which are visualized as a 2D
image. An extension including a third explanatory variable (combination of 3 class intervals)
is also provided. The package allows the user to define his own partition of variables. The
meancoef function enables to extend the approach while using coefficients estimated in the
framework of SpiceFP. The user can access various functions required to achieve some of the
approach’s steps such as candidates, evaluate.candidates or coef_spicefp functions.
Data are also provided in the package to test the functions.

3.1. Transformation of functional predictors: the ”candidates” function

There is two main ways to construct candidate matrices. One is based on the framework
defined by the SpiceFP’s functions and the other allows the user to construct the matrices as
he wishes, before submitting them to the spicefp function via the candmatrices argument.
These two options are detailed hereafter.

Construction of candidate matrices in the package framework

The SpiceFP package constructs candidate matrices through the function candidates. Its
philosophy is to return matrices of new predictors with in columns combinations of two (three)
class intervals related to two (three) functional predictors. To achieve this goal, the function
requires as inputs each functional predictor, an R function that will be used to partition this
functional predictor and arguments of this function. The other requirements inform about the
number of cores to use (parallelization with doParallel package (Microsoft-Corporation and
Weston 2019)) and define whether or not the columns of candidate matrices (joint modalities)
should be centered or scaled. Each functional predictor is presented as one numerical matrix



10 SpiceFP: Exploratory Scalar-to-Function Procedure

with in columns observations of one statistical individual. Due to the fact that the functional
predictors should be observed with the same set T of time steps, the numerical matrices
contain Card(T ) rows and each row is relative to the observation variable t ∈ T . Statistical
individuals keep the same order through the matrices to be provided for fp1, fp2 or fp3

arguments.

In order to partition the observations of the functional predictors, the functions (fun1, fun2
or fun3) must comply with certain constraints. The only output of these functions must be
a numerical vector of breaks that will be used to generate the class intervals. They must
also consider at least two separate arguments. The first argument is a numerical vector (the
vector to be partitioned). The second is a list of partitioning parameters to be optimized by
the approach. The parameters to be optimized are the components of the partition vector u.
The parameters that do not need to be optimized can be defined as additional arguments and
set by default. To illustrate, let’s look at two partition functions. The first one, linbreaks,
presented below, allows to partition a numerical vector according to a linear scale. Its use
in the construction of the example1 vector allows the identification of 13 breaks that will be
used to formulate 12 consecutive class intervals.

R> linbreaks <- function(x,n){

+ round(seq(trunc(min(x)),

+ ceiling(max(x)),

+ length.out = unlist(n)+1),

+ 1)

+ }

R> set.seed(284)

R> example1 <- linbreaks(rpois(1000,100), list(12))

R> example1

[1] 67.0 72.2 77.5 82.8 88.0 93.2 98.5 103.8 109.0 114.2 119.5 124.8

[13] 130.0

For the second example, we focus on the logbreaks function in the SpiceFP package which
allows to get breaks according to a logarithmic scale. The reader can refer to the help page
of this function for more details. To compute the breaks, logbreaks requires two essential
parameters (alpha and J) provided by the argument parlist as well as other additional
arguments. One way to use logbreaks in the SpiceFP approach is to create a new function
Logbreaks setting the additional arguments by default as presented below. This framework
therefore offers the user a high degree of flexibility in the way functional predictors are par-
titioned.

R> Logbreaks <- function(x, Parameterlist){

+ logbreaks(x, Parameterlist, round_breaks = 1, plot_breaks = FALSE,

+ effect.threshold.begin = NA, effect.threshold.end = NA)

+ }

R> set.seed(284)

R> example2 <- Logbreaks(rpois(1000,100), list(0.05,12))

R> example2



Girault Gnanguenon Guesse, Patrice Loisel, Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert, Isabelle Sanchez11

[1] 67.0 69.5 72.4 75.5 79.1 83.2 87.7 92.9 98.6 105.2 112.5 120.7

[13] 130.0

Once functional predictors and partition functions are defined, another important argument
of candidate function is parlists. It is a list. Its length equals the number of functional
predictors involved in the model (i.e. 2 or 3). Each element of this list is related to one func-
tional predictor and its partition function. The length of each of these elements is exactly
the number of candidate matrices to create. More precisely, each element in parlists rep-
resents a list with all the second arguments related to one partition function that will help
to create various candidate matrices. In order to illustrate this, let us consider the creation
of the argument parlists required to transform two functional predictors var1 and var2

into a set of candidate matrices. Suppose that one parameter is needed to partition var1

namely var1.nclass (4 values are possible: 10, 12, 14, 16) and two parameters for var2 :
var2.nclass (3 possible values: 20, 22, 24) and var2.alpha (3 possible values: 0.01, 0.02,
0.03). To construct 4× 3× 3 = 36 candidate matrices covering the different combinations of
parameters, parlists can be constructed using the following commands :

R> var1.nclass <- c(10, 12, 14, 16)

R> var2.nclass <- c(20, 22, 24)

R> var2.alpha <- c(0.01, 0.02, 0.03)

R> p2 <- expand.grid(var1.nclass, var2.alpha, var2.nclass)

R> parlist.var1 <- split(p2[,1], seq(nrow(p2)))

R> parlist.var1 <- lapply(parlist.var1, function(x){list(x[[1]])})

R> parlist.var2 <- split(p2[,2:3], seq(nrow(p2)))

R> parlist.var2 <- lapply(parlist.var2, function(x){list(x[[1]],x[[2]])})

R> parlists <- list(parlist.var1, parlist.var2)

R> length(parlists[[1]])

[1] 36

Then, the candidates function uses the partition function related to each functional predictor
to compute the breaks that should be used to construct its class intervals. These breaks
together with the observations of the functional variables (Ai, Bi, etc.), are the required inputs
of the functions hist_2d or hist_3d, used to construct, for each individual i, histograms or
contingency tables Cu

i . Each of these n contingency tables will be transformed into Xu
i , as

presented in the equation (3). All these matrices of explanatory variablesXu are saved in a list
with the same length as each element of parlists. Attention was also paid to associate with
each of these matrices, a numerical vector giving information on the index of the associated
vector u and the number of class intervals of each functional predictor in the order fp1, fp2
(and fp3, if three functional predictors are used). These numbers of class intervals will be
used to generate the penalty matrix Du,γ .

Construction of candidate matrices independently of the package framework

There is one constraint to respect in the construction of the candidate matrices that will
be provided directly as inputs to the function spicefp: the organization of these candi-
date matrices as well as their presentation must be similar to that provided by the function



12 SpiceFP: Exploratory Scalar-to-Function Procedure

candidates. TIn order to remove this constraint, we present here in details the candidates
function output. This output is a list of eleven named elements respectively and organized
as follows: to help complying with this constraint, we present here in details the candidates
function output. This output is a list of eleven elements, named and organized as follows:

• spicefp.dimension : scalar number equal to 2 or 3, which represents the number of
class intervals that compose a joint modality (in column of the Xu matrix).

• candidates : list in which each element is a list containing a matrix Xu and a vec-
tor Zu, both relative to the same candidate. The matrix, the first element of the
list, always contains n rows. The number of columns varies according to the candi-
dates. The columns are named by the combination of class intervals separated by the
symbol ”underscore ( )”. As example, for the two functional variables A and B, we
get [LA(v), LA(v + 1)[ [LB(w), LB(w + 1)[, v = 1, . . . , nA, w = 1, . . . , nB. The order
of the class intervals in editing the combination is important. Here, A is considered
the first and B the second. This order appears in the construction of the vector Zu

(Zu = c(match(u, U), nA, nB)). Its first element is an identification key that allows to
associate the Xu matrix with the parameters used to create it. The rest of the elements
Zu are the numbers of class intervals created by functional predictor arranged in the
same order.

• fp1, fp2, fp3, fun1, fun2, fun3, parlists, xcentering, xscaling : these terms
respectively represent the functional predictors, the associated partition functions, the
partition vectors and the logical parameters that indicate whether the candidate columns
should be centered or scaled. They correspond to the elements used or not in the con-
struction of the candidates. The user can assign them the NULL value but he must
provide a value for each term.

3.2. Evaluation of candidate models by generalized fused lasso: the ”evaluate.candidates”
function

After constructing the candidate matrices, the second step of the approach is implemented
by the evaluate.candidates function. This function mainly returns a matrix of information
criteria values, with in rows the models and in columns the associated parameters. This
function consists in estimating the parameters (λ, β̂u,γ(λ)) of equation (5) and computing, for
each model, different information criteria Hirose, Tateishi, and Konishi (2013b). To achieve
this, we start by defining a set Γ containing all the γ values. For each candidate Xu, we
construct Card(Γ) penalty matrices Du,γ . Each Du,γ is generated using the argument penfun
of evaluate.candidates. penfun is a function taking as inputs all elements of the Zu vector
except the first one. By default, it takes the NULL value. In this case, either the getD2dSparse
function of the genlasso package Arnold and Tibshirani (2020) (when spicefp.dimension =
2) or the getD3dSparse function of the SpiceFP package (when spicefp.dimension = 3) are
used. getD2dSparse allows to define a rook’s case contiguity between the joint modalities.
getD3dSparse is an extension of getD2dSparse to a third dimension. More precisely, it is the
part of Du,γ (see equation (6)) penalizing the fusion of the coefficients that is constructed by
penfun. It can be noticed that γ is not part of its arguments. The creation of Du,γ,p, the part



Girault Gnanguenon Guesse, Patrice Loisel, Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert, Isabelle Sanchez13

Table 2: Statistics used to summarize the information associated with a model involving a
response variable y, a candidate matrix Xu, estimated coefficients βu,γ(λ), degree of freedom
df and σ2 the variance of y.

Statistics Formula

Residual Sum of Squares RSS = ‖y −Xuβu,γ(λ)‖22

Generalized Cross Validation Craven and Wahba (1979) GCV =
1

n

RSS

(1− df/n)2

Slope of regression ŷ ∼ y; (ŷ = Xuβu,γ(λ)) Slope = (tyy)−1 tyŷ

Variance ratio of ŷ and y Rvar = σ2
ŷ/σ

2

that penalizes parsimony, is automatically done in the next step by the fusedlasso function
(genlasso).

In statistics, they are many fast algorithms for solving linear regression with l1 penalty at a
single value of the tuning parameter λ. But when the solution is requested for many values of
the tuning parameter, the least-angle regression algorithm (LARS) Efron, Hastie, Johnstone,
and Tibshirani (2004) provides a computational advantage in the sense that it help to solve
linear regression with l1 penalty for all λ ∈ [0,∞[. The algorithm in genlasso is derived from
the LARS path algorithm in order to solve problems that use the l1 norm to enforce structural
constraints instead of pure sparsity on the coefficients in a linear regression Tibshirani and
Taylor (2011). Since SpiceFP has to estimate a tuning parameter as well as coefficients for
different candidate matrices, this computational advantage is welcome. The genlasso package
is designed to compute the solution path of the generalized lasso problem, which minimizes
a criterion similar to the one presented in equation (5). This solution path is computed by
solving the equivalent Lagrange dual problem and its implementation is presented in Arnold
and Tibshirani (2016). For a candidate Xu and a penalty matrix Du,γ , fusedlasso returns
Nλ couples (λ, β̂u,γ(λ)). The values of lambda in these couples are those at which the solution
path changes slope. By default, Nλ = 2000 when using genlasso Arnold and Tibshirani (2020).
But we will only work with nλ < Nλ pairs chosen according to a logarithmic scale in the path
solution (argument nknots) or from an a priori knowledge of the number of expected areas
of influence (argument appropriate.df).

3.3. Post-evaluation treatment and result construction

The SpiceFP package returns areas of influence of non null coefficients.

spicefp is the main function of the SpiceFP package. It allows to implement the SPICEFP
approach from already constructed candidate matrices to be provided as inputs (argument
candmatrices) or candidate matrices to be constructed via functional predictors (fp1, fp2,

fp3) and associated categorization elements (fun1, fun2, fun3, parlists). In this latter
case, the function candidates is used to construct these matrices. At each iteration, the
candidates are evaluated and the best model is selected via the AIC or the BIC. As a result,
vectors of coefficients of different lengths (i.e. from different meshes) can be selected at the
various iterations. This situation does not pose any difficulty in estimating the predicted



14 SpiceFP: Exploratory Scalar-to-Function Procedure

values ŷ. It is obtained by summing the products Xuβu,γ(λ) of the models retained at each
iteration. In order to visualize the identified areas of influence, it is essential to be able to sum
the coefficients retained at each iteration. The functions finemeshed2d and finemeshed3d

respectively allow to transform a vector of coefficients (named with combinations of classes)
into a 2 and 3 dimensional table with an extremely fine mesh. Once the same fine mesh is used
to transform all the coefficient vectors, it is easy to sum up them and to visualize the areas
of influence. This process allows to approximate the area of coefficients (continuous) from
discrete estimates. All these procedures are already implemented in the function spicefp.

The function coef_spicefp, provides from the outputs of spicefp, the possibility to recon-
struct any model evaluated during the approach, regardless of the iteration. The candidate
matrices as well as the result of their evaluation, the coefficients retained at each iteration,
and the sum of the fine meshes associated with these coefficients are the main outputs of
spicefp.

Remark: It is possible to obtain other results from the spicefp outputs. Instead of successive
iterations, we can focus only on the first iteration and make an average of the best models
obtained at this iteration. The number of best models to be averaged has to be defined by
the user. In the simulations presented in (Gnanguenon Guesse et al. 202X), this average of
coefficients performs slightly less than the approach itself, but has the advantage of recon-
structing the contours of the areas of influence much more faithfully. This model average can
be implemented by the function meancoef of the package SpiceFP.

4. Example

In this section, we are interested in exploring the joint influence of two functional variables
(Temperature and Irradiance) on a response variable (FerariIndex_Difference) giving
information on the quality of the grape berry. The data are available and described in the
package SpiceFP. The hypothesis of a joint influence is made because both temperature and
irradiance are affected by solar radiation. But before exploring this joint influence, let us first
look at each of the functional predictors in order to better partition them. The distribution of
the Temperature values (see figure 3) suggests that a linear scale is suitable for its partitioning.
If this scale was used for Irradiance, the majority of observations would be distributed in very
few classes.

We then propose to use a logarithmic scale to partition the Irradiance values. This scale
has the advantage of expanding the low values and compressing the high ones. The function
logbreaks of SpiceFP allows to obtain such results. It is necessary to provide the argument
of this function: the parameter α. For a fixed number of breaks, this parameter controls the
proportion of breaks chosen from the low values. By visualizing some Irradiance distributions
made from a logarithmic scale (figure 4), the user can get an idea of the values to scan to
build the different candidate matrices.

Once all this information is available, we decide to build candidate matrices with the number
of Temperature classes (linear scale) varying between 10 and 18 and the number of Irradiance
classes (logarithmic scale) between 15 and 25. The values of the parameter alpha, necessary
for the logarithmic scale will vary between e−5 and e−1. At this step, the user can visualize,
with the function hist_2d of SpiceFP, a distribution of the observations in two dimensions
(Figure 5). This provides insight into areas of relative importance, if any.



Girault Gnanguenon Guesse, Patrice Loisel, Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert, Isabelle Sanchez15

Temperature

D
e
n
s
it
y

15 20 25 30 35 40 45

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

Irradiance

D
e
n
s
it
y

0 400 800 1200

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

Figure 3: Distribution of Temperature and Irradiance values according to a linear scale

alpha = 0.025

Irradiance

D
e
n
s
it
y

20 50 200 500

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

alpha = 0.25

Irradiance

D
e
n
s
it
y

20 50 200 500

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Figure 4: Distribution of Irradiance values according to a logarithmic scale



16 SpiceFP: Exploratory Scalar-to-Function Procedure

Figure 5: Candidate matrix with 14 Temperature classes on linear scale and 12 Irradiance
classes on log scale. ■: Joint modalities that have never been observed.

In this example, the construction of 120 candidate matrices allowed us to roughly browse the
value ranges of the three parameters constituting the partition vector u. The user should
keep in mind that the execution time of the approach is correlated to the number of can-
didate matrices to be evaluated, as well as to the complexity of the links between the joint
modalities of the candidate matrices. With respect to the γ ratio between parsimony and
fusion regulation parameters, 6 ratios were used. The approach can be performed using the
following commands :

R> ## Data and inputs

R> tpr.nclass=seq(10,18,2)

R> irdc.nclass=seq(15,25,3)

R> irdc.alpha=round(exp(seq(-5,-1,length.out=6 )),4)

R> p2<-expand.grid(tpr.nclass, irdc.alpha, irdc.nclass)

R> parlist.tpr<-split(p2[,1], seq(nrow(p2)))

R> parlist.irdc<-split(p2[,2:3], seq(nrow(p2)))

R> parlist.irdc<-lapply(

+ parlist.irdc,function(x){

+ list(x[[1]],x[[2]])}

+ )

R> start_time_sp <- Sys.time()

R> ex_sp<-spicefp(y = FerariIndex_Difference$fi_dif,

+ fp1 = m.irdc, fun1 = logbreaks,

+ fp2 = m.tpr, fun2 = linbreaks,

+ parlists = list(parlist.irdc, parlist.tpr),

+ penratios = c(1/100, 1/10, 1, 10),

+ K = 2, criterion = "AIC_",

+ nknots = 100, ncores = 4,

+ dim.finemesh = c(1000, 1000),

+ write.external.file = TRUE)



Girault Gnanguenon Guesse, Patrice Loisel, Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert, Isabelle Sanchez17

R> duration_sp <- Sys.time() - start_time_sp

About one hour and fifty minutes were needed to perform the calculations (2 iterations) using
4 cores (Intel Core i7-7600U CPU, 2.80GHz × 4 ). The argument write.external.file =

TRUE allowed the library to generate as an external file (available in the working directory)
the summary table of the model evaluation at each iteration. The final result is shown in
figure 6.

Figure 6: Visualization of the SpiceFP result (2 iterations, AIC criterion). ■: Joint modalities
that have never been observed.

From the figure 6, one can observe the joint modalities for which no observation is made (value
:NA, color black). This makes it possible to differentiate between unobserved and observed
but non-influential areas. As an interpretation, we can retain that for low irradiance values
(< 100 mmol.m−2.s−1), there is a gradient according to temperature which is not suitable for
an increase of the Ferari index. All the information on the models retained in the two iterations
are accessible via the commands ex_sp$Evaluations[[1]] and ex_sp$Evaluations[[2]].
Their characteristics are as follows:

R> # Itération 1

R> t(ex_sp$Evaluations[[1]]$thecandidate.parameters)

Candidate_id Pen_ratio PenPar_fusion Df_ RSS_ AIC_ BIC_

[1,] 108 10 0.1648765 3 13.53096 214.5332 218.9305

AICc_ Cp_ GCV_ Slope_ Var_ratio

[1,] 56.41074 13.86642 0.5148522 0.5650574 0.327378

R> # Itération 2

R> t(ex_sp$Evaluations[[2]]$thecandidate.parameters)

Candidate_id Pen_ratio PenPar_fusion Df_ RSS_ AIC_ BIC_

[1,] 101 0.1 0.3617341 4 13.35619 668.4776 674.3406



18 SpiceFP: Exploratory Scalar-to-Function Procedure

AICc_ Cp_ GCV_ Slope_ Var_ratio

[1,] 53.37039 13.50262 0.5451506 0.2108834 0.6919936

An estimate of the goodness of fit of the final estimate can be obtained: i) statistically by
computing the correlation between the response variable y and the predictions ŷ,

R> xbeta <- c(ex_sp$Evaluations[[1]]$XBeta + ex_sp$Evaluations[[2]]$XBeta)

R> cor(FerariIndex_Difference$fi_dif , xbeta, method = "pearson")

[1] 0.8884187

ii) or graphically (figure 7) by representing y and ŷ in the same scatterplot.

Figure 7: Quality of the SPICEFP estimation

Let’s take a closer look at the top 10 models among those selected by the AIC in order to
make an average.

R> # Models at iteration 1

R> models_iter1 <- read.table(ex_sp$Evaluations[[1]]$Evaluation.results$evaluation.result,

header = TRUE)

R> dim(models_iter1)

[1] 48000 12

R> OrderbyAIC_iter1 <- models_iter1[order(models_iter1$AIC_) ,]

R> head(OrderbyAIC_iter1, n = 10)

Candidate_id Pen_ratio PenPar_fusion Df_ RSS_ AIC_ BIC_

43122 108 10.00 0.1648765 3 13.53096 214.5332 218.9305

43121 108 10.00 0.1846918 3 13.54702 214.8206 219.2178



Girault Gnanguenon Guesse, Patrice Loisel, Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert, Isabelle Sanchez19

43120 108 10.00 0.2068887 3 13.56718 215.1811 219.5783

43119 108 10.00 0.2317533 3 13.59248 215.6336 220.0308

43009 108 1.00 0.7389190 3 13.59921 215.7539 220.1511

43118 108 10.00 0.2596061 3 13.62422 216.2013 220.5985

40725 103 10.00 0.1380610 4 13.51566 216.2597 222.1226

15526 38 10.00 0.1519366 3 13.63613 216.4143 220.8115

8851 24 0.01 0.9533787 3 13.64396 216.5543 220.9515

15525 38 10.00 0.1697173 3 13.64786 216.6240 221.0212

AICc_ Cp_ GCV_ Slope_ Var_ratio

43122 56.41074 13.86642 0.5148522 0.5650574 0.3273780

43121 56.44872 13.88249 0.5154635 0.5477581 0.3366471

43120 56.49630 13.90265 0.5162305 0.5283798 0.3482779

43119 56.55591 13.92795 0.5171930 0.5066726 0.3628724

43009 56.57175 13.93467 0.5174491 0.4948788 0.3667548

43118 56.63055 13.95969 0.5184008 0.4823565 0.3811858

40725 53.75021 13.96295 0.5516597 0.5671179 0.3185532

15526 56.65851 13.97160 0.5188539 0.5229218 0.3880567

8851 56.67687 13.97942 0.5191518 0.5076475 0.3925728

15525 56.68601 13.98332 0.5193001 0.5093079 0.3948225

The reconstruction of the models is done through the function coef_spicefp and the visual-
ization of their mean is presented in figure 8.

R> # Estimation of coefficients

R> AICtopten_iter1 <- coef_spicefp( spicefp.result = ex_sp,

+ iter_ = 1,

+ criterion = "AIC_",

+ nmodels = 10,

+ model.parameters = NULL,

+ dim.finemesh = c(1000, 1000),

+ ncores = 4,

+ write.external.file = TRUE )

R> # Compute the mean of the coefficients

R> mean_AICtopten_iter1 <- meancoef(coef.list = AICtopten_iter1$coef.list ,

+ weight = rep(1,10))

The goodness of fit of the model associated with the mean of these coefficients can also be
obtained by computing the correlation between y and ŷ.

R> cor(FerariIndex_Difference$fi_dif , mean_AICtopten_iter1$y.estimated,

+ method = "pearson")

[1] 0.8312705

5. Conclusion



20 SpiceFP: Exploratory Scalar-to-Function Procedure

Figure 8: Visualization of coefficient mean of the 10 best models selected by the AIC at
iteration 1. ■: Joint modalities that have never been observed.

The SpiceFP library offers various functions allowing the implementation of the exploratory
approach of the same name. Although exploratory, this approach requires the use of infer-
ential statistics tools. The functional model that supports this approach takes functional
observations as predictors and a scalar variable as a response. This falls within the frame-
work of “scalar-on-function” functional models. It implies a joint influence of the predictors
and is designed for exploration in this direction. Thus, it allows the identification of areas of
influence (derived from combinations of classes of predictors).

Acknowledgments

This work was supported by the French National Research Agency under the Investments
for the Future Program, referred as ANR-16-CONV-0004. The data used were acquired
during the Innovine project, funded by the Seventh Framework Programme of the European
Community (FP7/2007-2013), under Grant Agreement No. FP7-311775.

References

Akaike H (1973). Information Theory and an Extension of the Maximum Likelihood Principle,
pp. 199–213. Springer New York, New York, NY.

Arnold TB, Tibshirani RJ (2016). “Efficient Implementations of the Generalized Lasso
Dual Path Algorithm.” Journal of Computational and Graphical Statistics, 25(1), 1–
27. doi:10.1080/10618600.2015.1008638. https://doi.org/10.1080/10618600.2015.
1008638, URL https://doi.org/10.1080/10618600.2015.1008638.

Arnold TB, Tibshirani RJ (2019). genlasso: Path algorithm for generalized lasso problems.
Package version 1.4 for R version 3.6.1.



Girault Gnanguenon Guesse, Patrice Loisel, Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert, Isabelle Sanchez21

Arnold TB, Tibshirani RJ (2020). genlasso: Path Algorithm for Generalized Lasso Problems.
R package version 1.5, URL https://CRAN.R-project.org/package=genlasso.

Craven P, Wahba G (1979). “Smoothing noisy data with spline functions: Estimating the
correct degree of smoothing by the method of generalized cross-validation.” Numer. Math.,
31, 377–403.

Efron B, Hastie T, Johnstone I, Tibshirani R (2004). “Least Angle Regression” (with discus-
sions).” The Annals of Statistics, 32, 407–499.

Gertheiss J, Maity A, Staicu AM (2013). “Variable selection in generalized functional linear
models.” Stat, 2(1), 86–101. doi:https://doi.org/10.1002/sta4.20. URL https://

onlinelibrary.wiley.com/doi/abs/10.1002/sta4.20.

Gnanguenon Guesse G, Loisel P, Fontez B, Simonneau T, Hilgert N (202X). “Identification
of combined effects of functional variables using contingency tables with ordered categories
- Application to agri-environmental issues.” to appear, XX.

Goldsmith J, Bobb J, Crainiceanu CM, Caffo B, Reich D (2011). “Penalized Functional Regres-
sion.” Journal of Computational and Graphical Statistics, 20(4), 830–851. doi:10.1198/

jcgs.2010.10007. PMID: 22368438, https://doi.org/10.1198/jcgs.2010.10007, URL
https://doi.org/10.1198/jcgs.2010.10007.

Goldsmith J, Huang L, Crainiceanu CM (2014). “Smooth Scalar-on-Image Regression via Spa-
tial Bayesian Variable Selection.” Journal of Computational and Graphical Statistics, 23(1),
46–64. doi:10.1080/10618600.2012.743437. PMID: 24729670, https://doi.org/10.
1080/10618600.2012.743437, URL https://doi.org/10.1080/10618600.2012.743437.

Grollemund PM, Abraham C, Baragatti M, Pudlo P (2019). “Bayesian Functional Linear
Regression with Sparse Step Functions.” Bayesian Analysis, 14(1), 111 – 135. doi:10.

1214/18-BA1095. URL https://doi.org/10.1214/18-BA1095.

Guillas S, Lai MJ (2010). “Bivariate splines for spatial functional regression
models.” Journal of Nonparametric Statistics, 22(4), 477–497. doi:10.1080/

10485250903323180. https://doi.org/10.1080/10485250903323180, URL https://

doi.org/10.1080/10485250903323180.

Hirose K, Tateishi S, Konishi S (2013a). “Tuning parameter selection in sparse regression
modeling.” Computational Statistics & Data Analysis, 59, 28 – 40. ISSN 0167-9473. doi:
https://doi.org/10.1016/j.csda.2012.10.005. URL http://www.sciencedirect.

com/science/article/pii/S0167947312003556.

Hirose K, Tateishi S, Konishi S (2013b). “Tuning parameter selection in sparse regression
modeling.”Computational Statistics & Data Analysis, 59(C), 28–40. doi:10.1016/j.csda.
2012.10.00. URL https://ideas.repec.org/a/eee/csdana/v59y2013icp28-40.html.

James GM, Silverman BW (2005). “Functional Adaptive Model Estimation.” Journal of the
American Statistical Association, 100(470), 565–576. doi:10.1198/016214504000001556.
URL https://doi.org/10.1198/016214504000001556.

James GM, Wang J, Zhu J (2009). “Functional Linear Regression That’s Interpretable.” The
Annals of Statistics, 37(5a), 2083–2108.



22 SpiceFP: Exploratory Scalar-to-Function Procedure

Kang J, Reich BJ, Staicu AM (2018). “Scalar-on-image regression via the soft-
thresholded Gaussian process.” Biometrika, 105(1), 165–184. ISSN 0006-3444. doi:10.

1093/biomet/asx075. https://academic.oup.com/biomet/article-pdf/105/1/165/

24331693/asx075.pdf, URL https://doi.org/10.1093/biomet/asx075.

Li F, Zhang T, Wang Q, Gonzalez MZ, Maresh EL, Coan JA (2015). “Spatial Bayesian variable
selection and grouping for high-dimensional scalar-on-image regression.” Ann. Appl. Stat.,
9(2), 687–713. doi:10.1214/15-AOAS818. URL https://doi.org/10.1214/15-AOAS818.

Li Y, Sun H, Deng X, Zhang C, Wang HPB, Jin R (2020). “Manufacturing quality predic-
tion using smooth spatial variable selection estimator with applications in aerosol jet®
printed electronics manufacturing.” IISE Transactions, 52(3), 321–333. doi:10.1080/

24725854.2019.1593556. https://doi.org/10.1080/24725854.2019.1593556, URL
https://doi.org/10.1080/24725854.2019.1593556.

Ma W, Xiao L, Liu B, Lindquist MA (2019). “A functional mixed model for scalar on function
regression with application to a functional MRI study.”Biostatistics. ISSN 1465-4644. doi:
10.1093/biostatistics/kxz046. Kxz046, https://academic.oup.com/biostatistics/
advance-article-pdf/doi/10.1093/biostatistics/kxz046/30249641/kxz046.pdf,
URL https://doi.org/10.1093/biostatistics/kxz046.

Mairal J, Yu B (2012). “Complexity Analysis of the Lasso Regularization Path.” In J Langford,
J Pineau (eds.), Proceedings of the 29th International Conference on Machine Learning
(ICML-12), ICML ’12, pp. 353–360. Omnipress, New York, NY, USA. ISBN 978-1-4503-
1285-1.

Mallows CL (1973). “Some Comments on CP.”Technometrics, 15(4), 661–675. ISSN 00401706.
URL http://www.jstor.org/stable/1267380.

Marx BD, Eilers PHC (2005). “Multidimensional Penalized Signal Regression.” Technomet-
rics, 47(1), 13–22. ISSN 00401706. URL http://www.jstor.org/stable/25470930.

Microsoft-Corporation, Weston S (2019). doParallel: Foreach Parallel Adaptor for the ’par-
allel’ Package. R package version 1.0.15, URL https://CRAN.R-project.org/package=

doParallel.

Ramsay J, Silverman B (2005). Functional Data Analysis. Springer Series in Statistics.
Springer New York. ISBN 9780387227511. URL https://books.google.fr/books?id=

REzuyz_V6OQC.

Reiss PT, Goldsmith J, Shang HL, Ogden RT (2017). “Methods for Scalar-on-
Function Regression.” International Statistical Review, 85(2), 228–249. doi:10.1111/

insr.12163. https://onlinelibrary.wiley.com/doi/pdf/10.1111/insr.12163, URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12163.

Schwarz G (1978). “Estimating the Dimension of a Model.” Ann. Statist., 6(2), 461–464.
doi:10.1214/aos/1176344136. URL https://doi.org/10.1214/aos/1176344136.

Tibshirani RJ, Taylor J (2011). “The solution path of the generalized Lasso.” The Annals
of Statistics, 39(3), 1335–1371. ISSN 00905364. URL http://www.jstor.org/stable/

23033600.



Girault Gnanguenon Guesse, Patrice Loisel, Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert, Isabelle Sanchez23

Tibshirani RJ, Taylor J (2012). “Degrees of freedom in lasso problems.” Ann. Statist., 40(2),
1198–1232. doi:10.1214/12-AOS1003. URL https://doi.org/10.1214/12-AOS1003.

Usset J, Staicu AM, Maity A (2016). “Interaction models for functional regression.” Com-
putational Statistics and Data Analysis, 94, 317–329. ISSN 0167-9473. doi:https://doi.
org/10.1016/j.csda.2015.08.020. URL https://www.sciencedirect.com/science/

article/pii/S016794731500208X.

Wang X, Zhu H, for the Alzheimer’s Disease Neuroimaging Initiative (2017). “Generalized
Scalar-on-Image Regression Models via Total Variation.”Journal of the American Statistical
Association, 112:519, 1156–1168. doi:DOI:10.1080/01621459.2016.1194846.

Xin B, Kawahara Y, Wang Y, Gao W (2014). “Efficient generalized fused lasso and its
application to the diagnosis of Alzheimer’s disease.” Proceedings of the National Conference
on Artificial Intelligence, 3, 2163–2169.

Affiliation:

Girault Gnanguenon Guesse
Université Montpellier
MISTEA, Université Montpellier, INRAE, Institut Agro, Montpellier, France
E-mail: girault.gnanguenon@gmail.com

Patrice Loisel
Université Montpellier
MISTEA, Université Montpellier, INRAE, Institut Agro, Montpellier, France
E-mail: patrice.loisel@inrae.fr

Bénedicte Fontez
Université Montpellier
MISTEA, Université Montpellier, INRAE, Institut Agro, Montpellier, France
E-mail: benedicte.fontez@supagro.fr

Thierry Simonneau
Université Montpellier
LEPSE, Université Montpellier, INRAE, Institut Agro, Montpellier, France
E-mail: thierry.simonneau@inrae.fr

Nadine Hilgert
Université Montpellier
MISTEA, Université Montpellier, INRAE, Institut Agro, Montpellier, France
E-mail: nadine.hilgert@inrae.fr



24 SpiceFP: Exploratory Scalar-to-Function Procedure

Isabelle Sanchez
Université Montpellier
MISTEA, Université Montpellier, INRAE, Institut Agro, Montpellier, France
E-mail: isabelle.sanchez@inrae.fr


