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Abstract

Categorical data are prevalent in almost all research fields and business applications.
Their statistical analysis and inference often rely on probit/logistic regression models. For
these common models, however, there is no universally adopted measure so as to perform
goodness-of-fit analysis. To this end, Liu, Zhu, Greenwell, and Lin (2023) proposed a
so-called surrogate R2 that resembles the ordinary least square (OLS) R2 for linear re-
gression models. The surrogate R2 used the notion of surrogacy, namely, generating a
continuous response S and using it as a surrogate of the original categorical response Y
(Liu and Zhang 2018; Liu, Li, Yu, and Moustaki 2021; Cheng, Wang, and Zhang 2021).
In this paper, we develop an R package SurrogateRsq to implement the surrogate R2

method. The package is compatible with existing model fitting functions (e.g., glm(),
polr(), clm(), and vglm()), and its features are exhibited in a wine rating analysis. Our
package can be used jointly with other R packages developed for variable selection and
model diagnostics so as to form a complete model development process. This process is
summarized and demonstrated in a categorical-data-modeling workflow that practition-
ers can follow. To exemplify an extended utility of the surrogate-R2-based goodness-of-fit
analysis, we also use this package to illustrate how to compare different empirical models
trained from different samples in the wine rating analysis. The result suggest that the
package allows us to evaluate comparability across multiple samples/models/studies that
address the same or similar scientific or business question.

Keywords: categorical data analysis, goodness-of-fit measure, logistic regression, model com-
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1. Introduction

Categorical data are prevalent in all areas, including economics, marketing, finance, psychol-
ogy, and clinical studies. To analyze categorical data, the probit or logit models are often
used to make inferences. To perform model assessment and comparison, researchers often rely
on goodness-of-fit measures, such as R2 (also known as the coefficient of determination). For
example, the ordinary least square (OLS) R2 is one of the most extensively used goodness-
of-fit measures for linear models in continuous data analysis. For categorical data analysis,
however, there is no such universally adopted R2 measure (Hagle and Mitchell 1992; Veall and
Zimmermann 1996). There have been continuous efforts in developing sensible R2 measures
for probit/logistic models, and more generally, generalized linear models (McFadden 1973;
McKelvey and Zavoina 1975; Efron 1978; Cox and Wermuth 1992; Laitila 1993; Zheng and
Agresti 2000; Liu and Agresti 2005; Hu, Shao, and Palta 2006; Liu et al. 2023). Among the
existing R2 measures, McKelvey-Zavoina’s R2

MZ (McKelvey and Zavoina 1975) and McFad-
den’s R2 (McFadden 1973) are probably the most well-known and widely used in domain
research (Hagle and Mitchell 1992; Veall and Zimmermann 1996). But as demonstrated in
Liu et al. (2023), Mckelvey-Zavoina’s R2

MZ does not hold monotonicity, which means a larger
model may have a smaller R2

MZ . This serious defection of R2
MZ may be misleading in practice

and misguide the model-building process. On the other hand, McFadden’s R2 relies on the
ratio of likelihoods, and it does not preserve the interpretation of explained variance. Neither
of these two R2 measures meets all of the three criteria considered in Liu et al. (2023):

(C1) It can approximate the OLS R2 based on the latent continuous outcome.

(C2) It has the interpretation of the explained proportion of variance.

(C3) It maintains the monotonicity property between nested models, which means that a
larger model should have a larger R2 value.

Liu et al. (2023) proposed a so-called surrogate R2 that satisfies all three criteria for probit
models. This surrogate R2 used the notion of surrogacy, namely, generating a continuous
response S and using it as a surrogate for the original categorical response Y (Liu and Zhang
2018; Liu et al. 2021; Cheng et al. 2021; Greenwell, McCarthy, Boehmke, and Liu 2018;
Li, Zhu, Chen, and Liu 2021). In the context of probit analysis, Liu et al. (2023) used
the truncated distributions induced by the latent variable structure to generate a surrogate
response S. This surrogate response S is then regressed on explanatory variables through
a linear model. The OLS R2 of this linear model is used as a surrogate R2 for the original
probit model. This surrogate R2 meets all three criteria (C1)-(C3).

The goals of this paper are (i) developing an R package to implement Liu et al. (2023)’s
method; (ii) demonstrating how this new package can be used jointly with other existing R
packages for variable selection and model diagnostics in the model building process; and (iii)
illustrating how this package can be used to compare different empirical models trained from
two different samples (a.k.a. comparability) in real data analysis.

Specifically, we first develop an R package to implement the surrogate R2 method for pro-
bit/logistic regression models. This package contains the R functions for generating point
and interval estimates of the surrogate R2 measure. The point/interval estimates allow re-
searchers and practitioners to evaluate the model’s overall goodness of fit and understand
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its uncertainty. In addition, we develop an R function that calculates the percentage contri-
bution of each variable to the overall surrogate R2. This percentage reflects each variable’s
contribution to the model’s overall explanatory power. Based on the contribution’s relative
size, our R function provides a “importance” ranking of all the explanatory variables.

Second, to provide practical guidance for categorical data modeling, we use the developed
R package to demonstrate how it can be used jointly with other R packages developed for
variable screening/selection and model diagnostics (leaps (Lumley and Lumley 2013), step()

function from the R core, glmnet (Friedman, Hastie, and Tibshirani 2010), ordinalNet

(Wurm, Rathouz, and Hanlon 2021), ncvreg (Breheny 2013), grpreg (Breheny and Breheny
2014), SIS (Saldana and Feng 2018), sure (Greenwell et al. 2018), PAsso (Zhu, Li, Chen,
and Liu 2020)). In particular, we recommend a workflow that consists of three steps, including
variable screening/selection, model diagnostics, and goodness-of-fit analysis. The workflow is
illustrated in the analysis of wine-tasting preference datasets.

Third, the comparability of the surrogate R2 across different samples and/or models allows
us to compare goodness-of-fit analysis from similar studies. The comparison can lead to
additional scientific/business insights which may be useful for decision making. To illustrate
this, we conduct goodness-of-fit analysis separately for the red wine and white wine samples
to demonstrate the comparability of the surrogate R2. Our analysis result reveals that (i)
the same set of explanatory variables has different explanatory power for red wine and white
wine (43.8% versus 31.0%), and (ii) the importance ranking of the explanatory variable (in
terms of their contribution to the surrogate R2) is different between red wine and white wine.

Our SurrogateRsq package has broad applicability. It is compatible with the following R
functions that can fit probit/logistic regression models for a binary or ordinal response: glm()

in the R core, polr() in the MASS package (Ripley, Venables, Bates, Hornik, Gebhardt,
Firth, and Ripley 2013), clm() in the ordinal package (Christensen 2019), and vglm() in
the VGAM package (Yee et al. 2010).

2. Review of the Surrogate R
2

We briefly review the surrogate R2 measure in the study of Liu et al. (2023). For the model
setting, we consider a probit/logit model with a set of explanatory variables. The categorical
response is either a binary or ordinal variable Y that has J categories {1, 2, . . . , J}, with the
order 1 < 2 < · · · < J ,

Pr{Y ≤ j} = G{αj − (β1X1 + · · · + βlXp)}, j = 1, . . . , J, (1)

where −∞ < α1 < · · · < αJ < +∞. The link function G(·) can be a probit (G(·) = Φ(·))
link or a logit (G(η) = 1/(1 + e−η) ). Each generic symbol of {X1, . . . Xp} in Model (1) can
represent a single variable of interest, a high-order term (e.g., X2), or an interaction term
between X and another variable. It is well-known that an equivalent way to express Model
(1) is through a latent variable. For example, if the link is probit, the latent variable has the
following form with a normally distributed ǫ:

Z = α1 + β1X1 + · · · + βpXp + ǫ, ǫ ∼ N(0, 1).

The categorical response Y can be viewed as generated from censoring the continuous latent



4 SurrogateRsq: an R package for categorical data goodness-of-fit analysis

variable Z in the following way:

Y =



















1 if −∞ < Z ≤ α1 + α1,
2 if α1 + α1 < Z ≤ α2 + α1,
· · ·
J if αJ−1 + α1 < Z < +∞.

To construct a goodness-of-fit R2, Liu et al. (2023) adopted the surrogate approach proposed
by Liu and Zhang (2018). The idea of the surrogate approach is to simulate a continuous
variable and use it as a surrogate for the original categorical variable in the analysis (Liu
and Zhang 2018; Liu et al. 2021; Cheng et al. 2021). In the context of probit models, Liu
et al. (2023) proposed to generate a surrogate response variable using the following truncated
conditional distribution:

S ∼



















Z | −∞ < Z ≤ α1 + α1 if Y = 1,
Z | α1 + α1 < Z ≤ α2 + α1 if Y = 2,
· · ·
Z | αJ−1 + α1 < Z < +∞ if Y = J.

Liu et al. (2023) proposed to regress the surrogate response S on {X1, . . . , Xp} using a linear
model below:

S = α1 + β1X1 + · · · + βpXp + ǫ, ǫ ∼ N(0, 1). (2)

Their approach used the OLS R2 measure of this linear model as a surrogate R2 for Model
(1):

R2
(S){X1, . . . , Xp} = the OLS R2 of the linear model (2).

Liu et al. (2023) showed that the surrogate R2
(S) measure has three desirable properties.

First, it approximates the OLS R2 calculated using the latent continuous outcome Z. This
property enables us to compare surrogate R2’s and OLS R2’s across different models and
samples that address the same scientific question. Second, as it is the OLS R2 calculated
using the continuous surrogate response S, the surrogate R2

(S) has the interpretation of the
explained proportion of variance. It measures the explained proportion of the variance of the
surrogate response S through the linear model. This explained proportion of variance implies
the explanatory power of all the features in the fitted model. Third, the surrogate R2

(S)
maintains monotonicity between nested models, which makes it suitable for comparing the
relative explanatory power of different models. In contrast, the well-known McFadden’s R2

does not preserve the first two properties of the surrogate R2
(S). McFadden’s R2 relies on the

ratio of likelihoods, so it neither approximates the OLS R2 nor preserves the interpretation
of explained variance. On the other hand, Liu et al. (2023) showed that McKelvey-Zavoina’s
R2

MZ did not necessarily maintain monotonicity between nested models. This serious issue
may make McKelvey-Zavoina’s R2

MZ an unsuitable tool for measuring the goodness of fit.

To make inferences for the surrogate R2
(S), Liu et al. (2023) provided procedures to produce

point and interval estimates. Since the surrogate response S is obtained through simulation,
Liu et al. (2023) used a multiple-sampling scheme to “stabilize” the point estimate. They
also provided an implementation to produce an interval estimate with a 95% confidence level.
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This confidence interval is constructed through a bootstrap-based pseudo algorithm. When
the sample size is large (e.g., n = 2000), Liu et al. (2023)’s numerical studies show that the
interval measure of the surrogate R2

(S) can approximate the nominal coverage probability.

It is also worth noting that Liu et al. (2023)’s method requires a full model. This paper will
illustrate how to use existing tools, such as variable selection and model diagnostics, to initiate
a full model. The full model is used to generate a common surrogate response S, which is
then used to calculate surrogate R2

(S)’s of whatever reduced models. We will demonstrate
how to carry it out in a real data analysis presented in Section 5.

3. Main Functions of the SurrogateRsq package

We develop an R package SurrogateRsq for goodness-of-fit analysis of probit models. This
package contains functions to provide (i) a point estimate of the surrogate R2; (ii) an interval
estimate of the surrogate R2; (iii) an importance ranking of explanatory variables based on
their contributions to the total surrogate R2 of the full model; and (iv) other existing R2

measures in the literature. In this section, we explicitly explain the inputs and outputs of
these functions. In the next two sections, we will demonstrate the use of these functions
through a recommended workflow and real data examples.

1. surr_rsq: a function for producing a point estimate of the surrogate R2
(S) for a user-

specified model. It requires three inputs: a reduced model, a full model, and a dataset.
This function generates an S3 object of the class “surr_rsq”. Other functions in this
package can directly call this S3 object. The details of the three inputs are as follows:

• model: a model to be evaluated for the goodness of fit. Our implementation
supports a few popular classes of objects. They are the probit model from the
glm function in the R core stats package, the ordered probit model generated
from the plor function in the MASS package, clm() in the ordinal package, and
vglm() in the VGAM package.

• full_model: a full model initiated by the investigator. Liu et al. (2023)’s method
requires a full model. In Sections 4 and 5, we discuss in detail how to initiate a
full model.

• data: a dataset containing a categorical response and explanatory variables.

• avg.num: an optional input that specifies the numbers of simulations used in mul-
tiple sampling. The default value is 30. The surrogate R2

(S) is calculated using
the simulated surrogate response S. A multiple-sampling scheme can be used to
“stabilize” the point estimate of R2

(S) by using the average of multiple R2
(S)’s values.

R> surr_rsq(model,

+ full_model,

+ data,

+ avg.num = 30)

2. surr_rsq_ci: a function for generating an interval measure of the surrogate R2 with
the designated confidence level. This interval accounts for and reflects the uncertainty
in the R2 statistic. This function requires three inputs:
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• object: an object generated from the previous surr_rsq function.

• alpha: the value of alpha determines the confidence level of the interval, namely,
100(1 − α)%. The default value of alpha is 0.05.

• B: the number of bootstrap replications. The default value of B is 2000. The
confidence interval is derived from a bootstrap distribution for R2

(S). See the section

of “Inference by Multiple Sampling” in Liu et al. (2023).

R> surr_rsq_ci(object,

+ alpha = 0.05,

+ B = 2000)

3. surr_rsq_rank: a function to give ranks of explanatory variables based on their con-
tributions to the overall surrogate R2. The rank is based on the variance contribution
of each variable. Specifically, it calculates the reduction of the surrogate R2

(S) of the
model that removes each variable one at a time. The rank is then determined according
to the reduction, which indicates the importance of each variable relevant to others. In
addition to the ranks, the output table includes the R2 reduction and its percentage in
reference to the total surrogate R2 of the full model. The function requires two inputs:
object and data. They are, respectively, a generated object from the surr_rsq func-
tion and the dataset. The optional avg.num argument is the same as the one in the
surr_rsq function, and the option var.set is explained below.

• object: an object generated from the previous surr_rsq function.

• var.set: an optional argument that allows users to examine the contribution of a
set of variables, as a whole, to the total surrogate R2. If not specified, the function
gives results for individual variables.

R> surr_rsq_rank(object,

+ data,

+ var.set,

+ avg.num = 30)

4. rsq: a function to produce other pseudo R2 measures in the literature. They include
the R2’s proposed by McFadden (1973), McKelvey and Zavoina (1975), Cox and Snell
(1989), Nagelkerke (1991), and Tjur (2009). Liu et al. (2023) provided a comparison
between the surrogate R2 and those proposed by McFadden and McKelvey-Zavoina.
The function rsq has an argument which for specifying which pseudo R2 measure to
use. The rest of the arguments are the same as those in the surr_rsq function.

• which: an argument to specify which pseudo R2 measure to calculate. The function
rsq can produce the surrogate R2, McFadden R2, McKelvey-Zavoina R2, CoxSnell
R2, Nagelkerke R2, and Tjur R2.

R> rsq(model,

+ full_model=NULL,

+ data,
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Figure 1: An illustration of the workflow for modeling categorical data.

+ which = c("Surrogate", "McFadden", "McKelveyZavoina",

+ "CoxSnell", "Nagelkerke", "Tjur"),

+ avg.num = 30, ...)

4. Using R packages for categorical data modeling: a workflow

In empirical studies, goodness-of-fit analysis should be used jointly with other statistical
tools, such as variable screening/selection and model diagnostics, in the model-building and
refining process. In this section, we discuss how to follow the workflow in Figure 1 to carry
out statistical modeling for categorical data. We also discuss how to use the SurrogateRsq

package with other existing R packages to implement this workflow. As Liu et al. (2023)’s
method requires a full model, researchers and practitioners can also follow the process in
Figure 1 to initiate a full model so as to facilitate goodness-of-fit analysis.

1. In Step-0, we can use the AIC/BIC/LASSO or any other variable selection methods
deemed appropriate to trim or prune the set of explanatory variables to a “manage-
able” size (e.g., less than 20). The goal is to eliminate irrelevant variables so that
researchers can better investigate the model structure and assessment. The variable se-
lection techniques have been studied extensively in the literature. Specifically, one can
implement (i) the best subset selection using the function regsubsets() in the leaps

package; (ii) the forward/backward/stepwise selection using the function step()in the
R core; (iii) the shrinkage methods including the (adaptive) LASSO in the glmnet

package; (iv) the regularized ordinal regression model with an elastic net penalty in the
ordinalNet package; and (v) the penalized regression models with minimax concave
penalty (MCP) or smoothly clipped absolute deviation (SCAD) penalty in the ncvreg

package (Tibshirani 1996; Zou and Hastie 2005; Zou 2006; Simon, Friedman, Hastie,
and Tibshirani 2011; Wurm et al. 2021). When the dimension is ultrahigh, the sure
independence screening method can be applied through the SIS package (Fan and Lv
2008). When the variables are grouped, one can apply the group selection methods
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including the group lasso, group MCP, and group SCAD through the grpreg package
(Breheny and Breheny 2014). In some cases, Step-0 may be skipped if the experiment
only involves a (small) set of controlled variables. In these cases, the controlled variables
should be modeled regardless of statistical significance or predictive power. We limit
our discussion here because our focus is on goodness-of-fit analysis.

2. In Step-1, we can use diagnostic tools to inspect the model passed from Step-0, adjust
its functional form, and add additional elements if needed (e.g., higher-order or inter-
action terms). For categorical data, we can use the function autoplot.resid() in the
sure package (Liu and Zhang 2018; Greenwell et al. 2018) to generate three types of di-
agnostic plots: residual Q-Q plot, residual-vs-covariate plot, and residual-vs-fitted plots.
These plots can be used to visualize the discrepancy between the working model and the
“true” model. Similar plots can be produced using the function diagnostic.plot() in
the PAsso package (Zhu et al. 2020). These diagnostic plots give practitioners insights
on how to refine the model by possibly transforming the regression form or adding
higher-order terms. At the end of this diagnosing and refining process, we expect to
have a full model (Mfull) for subsequent inferences including goodness-of-fit analysis.

3. In Step-2, we can use the functions developed in our SurrogateRsq package to ex-
amine the goodness of fit of the full model Mfull and various reduced models of in-
terest. Specifically, we can produce the point and interval estimates of the surrogate
R2 by using the functions surr_rsq() and surr_rsq_ci(). In addition, we can quan-
tify the contribution of each individual variable to the overall surrogate R2 by using
the function surr_rsq_rank(). Based on the percentage contribution, the function
surr_rsq_rank() also provides ranks of the explanatory variables to show their rela-
tive importance. In the following section, we will show in a case study how our package
can help us understand the relative importance of explanatory variables and compare the
results across different samples. The “comparability” across different samples and/or
models is an appealing feature of the surrogate R2, which will be discussed in detail
along with the R implementation.

5. Analysis of the wine rating data: a demonstration

In this section, we demonstrate how to use our SurrogateRsq package, coupled with R
packages for model selection and diagnostics, to carry out statistical analysis of the wine rating
data. A critical problem in wine analysis is to understand how physicochemical properties of
wines may influence humane tasting preferences (Cortez, Cerdeira, Almeida, Matos, and Reis
2009). For this purpose, Cortez et al. (2009) collected a data set that contains wine ratings
for 1599 red wine samples and 4898 white wine samples. The response variable, wine ratings,
is measured on an ordinal scale ranging from 0 (very bad) to 10 (excellent). The explanatory
variables are 11 physicochemical features, including alcohol, sulphates, acidity, dioxide, pH,
and others.

Our analysis of the wine rating data follows the workflow discussed in Section 4. Specifically,
in Section 5.1, we initiate a full model using several R packages for variable selection and
model diagnostics. In Section 5.2, we use our SurrogateRsq package to evaluate (i) the
goodness-of-fit of the full model and several reduced models; (ii) the contribution of each
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individual variable to the overall R2; and (iii) the difference between the red wine and white
wine in terms of how physicochemical features may influence human tasting differently.

5.1. Initiating a full model using variable selection and model diagnostics

To start, we use the function polr() to fit a probit model to the red wine sample using all
the 11 explanatory variables. This “naive” model has identified three explanatory variables
are that insignificant; they are fixed.acidity, citric.acid, and residual.sugar.

R> library(SurrogateRsq)

R> library(MASS)

R> data("RedWine")

R> ### We remove an outlier where total.sulfur.dioxide>200.

R> RedWine2 <- subset(RedWine, total.sulfur.dioxide <= 200)

R> naive_formula <-

+ as.formula(quality ~ fixed.acidity + volatile.acidity + citric.acid +

+ residual.sugar + chlorides + free.sulfur.dioxide +

+ total.sulfur.dioxide + density + pH + sulphates +

+ alcohol)

R> naive_model <- polr(formula = naive_formula,

+ data = RedWine2,

+ method = "probit")

R> summary(naive_model)

Call:

polr(formula = full_formula, data = RedWine2, method = "probit")

Coefficients:

Value Std. Error t value

fixed.acidity 0.026476 0.028154 0.9404

volatile.acidity -1.867959 0.213445 -8.7515

citric.acid -0.336632 0.256198 -1.3140

residual.sugar 0.011032 0.020944 0.5267

chlorides -3.234491 0.733213 -4.4114

free.sulfur.dioxide 0.010063 0.003829 2.6278

total.sulfur.dioxide -0.007198 0.001343 -5.3597

density -6.678993 0.538393 -12.4054

pH -0.754044 0.277469 -2.7176

sulphates 1.589296 0.194509 8.1708

alcohol 0.480603 0.031945 15.0447

Intercepts:

Value Std. Error t value

3|4 -7.4023 0.5513 -13.4280

4|5 -6.5749 0.5483 -11.9915

5|6 -4.5379 0.5480 -8.2802

6|7 -2.9068 0.5530 -5.2563

7|8 -1.3617 0.5624 -2.4214
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Residual Deviance: 3079.007

AIC: 3111.007

Variable selection

As the number of explanatory variables is small, we use the exhaustive search method to
select variables.

R> model_exhau <- leaps::regsubsets(x = quality ~ .,

+ data = RedWine2,

+ nbest = 2,

+ nvmax = 11)

R> # We plot the exhaustive search selection results in Figure 2

R> plot(model_exhau)
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Figure 2: The selection results of exhaustive search method for the red wine analysis.

Figure 2 plots the exhaustive search selection results based on the BIC. Each row in the plot
represents a model that has been trained with the variables highlighted in the black color.
The top row is the selected model with the smallest BIC value. This model does not select
fixed.acidity, citric.acid, residual.sugar, and density. Note that the first three are
not significant. We will perform diagnostics on this model in the subsection that follows.

R> select_model <-

+ update(naive_model,

+ formula. =

+ ". ~ . - fixed.acidity - citric.acid - residual.sugar - density")

We remark that if the number of explanatory variables is (moderately) large, we can use the
step-wise selection method or regularization methods (e.g., with an L1, elastic net, minimax
concave, or SCAD penalty). Example code is attached in the supplementary materials.
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Model diagnostics

We conduct diagnostics of the model with variables selected in the preview step. For this
purpose, we use surrogate residuals (Liu and Zhang 2018), which can be implemented by
the function autoplot.resid() in the package sure (Greenwell et al. 2018) or the func-
tion diagnostic.plot() in the package PAsso (Zhu et al. 2020). The code below produces
residual-vs-covariate plots for the object select_model by specifying the output = "covariate".

R> library(PAsso)

R> p_sulphates <-

+ diagnostic.plot(object = select_model,

+ output = "covariate",

+ x = RedWine2$sulphates,

+ xlab = "sulphates")

Among all the residual-vs-covariate plots, we find that the residual-vs-sulphates plot in
Figure 3(a) shows an inverted U-shape pattern, which suggests a missing quadratic term of
sulphates. We update the model by adding a squared term I(sulphatesˆ2) to the object
select_model and run model diagnostics again using the code below. Figure 3(b) shows
that the plot for sulphates still exhibits a nonlinear pattern. We therefore add a cubit term
I(sulphatesˆ3) to the model. The LOESS curve in the updated plot in Figure 3(c) turns
out to be flat. We use this model as our full model (Mfull).
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Figure 3: Plots of surrogate residual versus sulphates for (a) the model with a linear term
of sulphates; (b) the model with a quadratic term of sulphates; and (c) the model with a
cubit term of sulphates. The solid red curves are LOESS curves.

R> mod_add_square <-

+ update(select_model, formula. = ". ~ . + I(sulphates^2)")

R> p_sulphates2 <-

+ diagnostic.plot(object = mod_add_square,

+ output = "covariate",

+ x = RedWine2$sulphates,

+ xlab = "sulphates")

R> mod_full <-

+ update(mod_add_square, formula. = ". ~ . + I(sulphates^3)")

R> p_sulphates3 <-
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+ diagnostic.plot(object = mod_full,

+ output = "covariate",

+ x = RedWine2$sulphates,

+ xlab = "sulphates")

R> grid.arrange(p_sulphates, p_sulphates2, p_sulphates3, ncol = 2)

Table 1: Model development for the red wine by variable selection and model diagnostics

Dependent variable: quality

Model Naive Selected + sulphates2 + sulphates3

full model Mfull

fixed.acidity 0.026
(0.028)

volatile.acidity −1.868∗∗∗ −1.722∗∗∗ −1.534∗∗∗ −1.491∗∗∗

(0.213) (0.180) (0.183) (0.183)
citric.acid −0.337

(0.256)
residual.sugar 0.011

(0.021)
chlorides −3.234∗∗∗ −3.488∗∗∗ −2.965∗∗∗ −2.604∗∗∗

(0.733) (0.699) (0.707) (0.715)
free.sulfur.dioxide 0.010∗∗∗ 0.011∗∗∗ 0.010∗∗ 0.010∗∗

(0.004) (0.004) (0.004) (0.004)
total.sulfur.dioxide −0.007∗∗∗ −0.008∗∗∗ −0.007∗∗∗ −0.007∗∗∗

(0.001) (0.001) (0.001) (0.001)
density −6.679∗∗∗

(0.538)
pH −0.754∗∗∗ −0.780∗∗∗ −0.969∗∗∗ −1.028∗∗∗

(0.277) (0.205) (0.208) (0.209)
sulphates 1.589∗∗∗ 1.570∗∗∗ 5.937∗∗∗ 15.147∗∗∗

(0.195) (0.193) (0.678) (2.591)
sulphates2 −2.515∗∗∗ −12.397∗∗∗

(0.374) (2.707)
sulphates3 3.092∗∗∗

(0.839)
alcohol 0.481∗∗∗ 0.479∗∗∗ 0.475∗∗∗ 0.472∗∗∗

(0.032) (0.031) (0.031) (0.031)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1 summarizes the model fitting results for the naive model and models progressively
trained in the procedures of variable selection and model diagnostics. Compared to the naive
model, the "Selected" column basically removes density and three non-significant variables,
which results in a lower BIC value. The last two columns of Table 1 confirm the statistical
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significance of both the squared and cubit terms of sulphates, which are identified and added
in the model diagnostics procedure. The model presented in the last column will be used as
the full model Mfull in our goodness-of-fit assessment in the next subsection.

5.2. Goodness-of-fit analysis and its extended utility

In this subsection, we use the our developed SurrogateRsq package to illustrate how to use
the surrogate R2 to (i) assess goodness-of-fit of the full model and reduced models; (ii) rank
exploratory variables based on their contributions to R2; and (iii) compare goodness of fit
across multiple samples and/or models.

Surrogate R
2 for the full model

First of all, we use the function surr_rsq to calculate the surrogate R2 of the full model
Mfull identified in the previous subsection. To do so, in the code below we set the arguments
model and full_model to be the same as Mfull. We use 30 as the number of simulations for
multiple sampling. The purpose of performing multiple sampling is to “stabilize” the point
estimate of R2 (Liu et al. 2023).

R> library(SurrogateRsq)

R> surr_obj_mod_full <-

+ surr_rsq(model = mod_full,

+ full_model = mod_full,

+ data = RedWine2,

+ avg.num = 30)

R> print(surr_obj_mod_full$surr_rsq,

+ digits = 3)

[1] 0.439

This function provides a point estimate of the surrogate R2 of the full model. The value
0.439 implies 43.9% of the variance of the surrogate response S can be explained by the seven
explanatory variables and two nonlinear terms of sulphates.

Surrogate R
2 for a reduced model

We can also use the same function surr_rsq to calculate the surrogate R2 of a reduce
model. For example, to evaluate the goodness of fit of the model without high-order terms
of sulphates, we simply need to change the model argument to be the reduced model
select_model as shown in the code below. The specification of the full model is still re-
quired in the code, and such a full model should be common to all the reduced models to
be compared. This is a way to eliminate the non-monotonicity issue as seen in Mckelvey-
Zavoina’s R2

MZ (Liu et al. 2023).

R> surr_obj_lm <- surr_rsq(model = select_model,

+ full_model = mod_full,

+ data = RedWine2,

+ avg.num = 30)

R> print(surr_obj_lm$surr_rsq,
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+ digit = 3)

[1] 0.41

The result shows that the surrogate R2 has been reduced to 0.41 if the squared and cubit
terms of sulphates are removed from the model. This means that the high-order terms of
sulphates constitutes 6.60% of the total surrogate R2.

Confidence interval for the surrogate R
2

The package SurrogateRsq allows us to produce a confidence interval for the surrogate R2

using the function surr_rsq_ci. This function can directly use the object surr_obj_mod_full

created earlier as the input of the object argument. In the code below, we set the signifi-
cance level alpha = 0.05 to produce a 95% confidence interval and the number of bootstrap
repetitions to be 2000. The output is a table with the lower and upper bounds of the confi-
dence interval. For the full model Mfull, the 95% confidence interval of the surrogate R2 is
[0.435, 0.441]. The tightness of this interval implies that the uncertainty of the R2 inference
is low.

R> full_mod_rsq_ci <-

+ surr_rsq_ci(object = surr_obj_mod_full,

+ alpha = 0.05,

+ B = 2000)

R> full_mod_rsq_ci

Lower Upper

Percentile 2.50% 97.50%

Confidence Interval 0.435 0.441

Importance ranking of explanatory variables

We apply the function surr_rsq_rank() to examine the contribution of each individual vari-
able to the overall surrogate R2, which in turn produces a table of importance ranking. In the
code below, we set the object argument as the object surr_obj_mod_full created earlier to
examine the relative contribution of the variables in the full model. The output table shows
(i) the surrogate R2 for the model that removes an explanatory variable one at a time; (ii)
the reduction of the R2 after removing such a variable; (iii) the percentage contribution of
this variable to the total surrogate R2; and (iv) the rank of the variable by its percentage
contribution. In the table below, we observe that the variable alcohol is ranked at the top
as it explains 25.80% of the total surrogate R2. It is followed by volatile.acidity (7.12%),
total.sulfur.dioxide (3.52%), and sulphates (3.13%). The rest of the explanatory vari-
ables contribute less than 3% to the total surrogate R2.

R> Rank_table_mod_full <-

+ surr_rsq_rank(object = surr_obj_mod_full,

+ data = RedWine2,

+ avg.num = 30)

R> print(Rank_table_mod_full, digits = 3)

Removed Variable SurrogateRsq Reduction Contribution Ranking
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alcohol 0.325 0.113 25.80% 1

volatile.acidity 0.407 0.031 7.12% 2

total.sulfur.dioxide 0.423 0.015 3.52% 3

sulphates 0.425 0.014 3.13% 4

pH 0.426 0.012 2.78% 5

I(sulphates^2) 0.429 0.009 2.11% 6

chlorides 0.433 0.005 1.21% 7

I(sulphates^3) 0.433 0.005 1.17% 8

free.sulfur.dioxide 0.434 0.004 0.96% 9

------------------------------------------------------------------------

The total surrogate R-squared of the full model is:

[1] 0.439

In the ranking table above, the contributions of sulphates and its higher order terms
sulphates2 and sulphates3 to the surrogate R2 are evaluated separately. This is the default
setting of the function surr_rsq_rank() if the optional argument var_set is not specified.
If it is of interest to evaluate the factor sulphates as a whole, the function surr_rsq_rank()

allows us to group sulphates, sulphates2, and sulphates3 by using the optional argument
var_set. For example, in the code below we create a list of two groups: one group contains
all terms of sulphates and the second group only contains higher order terms of sulphates.

R> var_set <- list(c("sulphates", "I(sulphates^2)", "I(sulphates^3)"),

+ c("I(sulphates^2)", "I(sulphates^3)"))

R> Rank_table2 <-

+ surr_rsq_rank(object = surr_obj_mod_full,

+ data = RedWine2,

+ var.set = var_set,

+ avg.num = 30)

R> print(Rank_table2, digits = 2)

Removed Variable SurrRsq Redu... Cont... Ranking

sulphates+I(sulphates^2)+I(sulphates^3) 0.378 0.061 13.82% 1

I(sulphates^2)+I(sulphates^3) 0.411 0.027 6.19% 2

------------------------------------------------------------------------

The total surrogate R-squared of the full model is:

[1] 0.439

The output table above shows that the factor sulphates in fact contributes 13.82% to the
total surrogate R2 if its linear, squared, and cubic terms are considered altogether. This
percentage contribution is much higher than that when only the linear term of sulphates

was evaluated (3.13%). By this result, sulphates is lifted to the second place in terms of
its relative contribution to the total surrogate R2. The output table also shows that if we
only consider the higher order terms of sulphates, the percentage contribution is 6.19%,
which is higher than any other individual variables except volatile.acidity (7.12%). This
is another piece of evidence that can supports the inclusion of the squared and cubit terms
of sulphates in the full model.
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Comparability of the surrogate R
2 across different samples and models

One of the motives of Liu et al. (2023) is to find an R2 measure so that we can compare
goodness of fit across different models (e.g., linear, binary, or ordinal regression models)
and/or samples that address the same or similar scientific/business question. We use the wine
data in Cortez et al. (2009) to demonstrate that the surrogate R2 enables this comparability,
which may lead to new insights into decision-making. Cortez et al. (2009)’s data include 1599
red wine samples and 4898 white wine samples. Although the same rating scale (i.e., from 0 to
10) were offered to wine experts, in the red wine sample only 6 rating categories (3 to 8) were
observed whereas in the white wine sample 7 rating categories (3 to 9) were observed. As a
result, the ordered probit models fitted to red and white wine samples have different number
of intercept parameters. In addition, after conducting the same analysis but to the white wine
sample (using similar code as presented before), we find out that the set of selected variables
is not the same. The 7 selected variables are alcohol, volatile.acidity, residual.sugar,
free.sulfur.dioxide, sulphates, fixed.acidity, and pH. As a result, the ordered probit
models fitted to red and white wine samples have different number of slope parameters as
well. Given the differences between the samples and models, the surrogate R2, nevertheless,
enables us to compare goodness-of-fit measures across the board. Table 2 summarizes the
result obtained using our developed package SurrogateRsq.

Table 2: Percentage contributions and ranks of the physicochemical variables in the analysis
of the red wine and white wine samples.

Red wine data White wine data
Surrogate R2=0.439 Surrogate R2=0.307

Variable Contribution Ranking Contribution Ranking

alcohol 25.80% 1 77.16% 1

sulphates (& higher-order terms) 13.82% 2 0.51% 5

volatile.acidity 7.12% 3 20.39% 2

total.sulfur.dioxide 3.52% 4

pH 2.78% 5 0.06% 7

chlorides 1.21% 6

free.sulfur.dioxide 0.96% 7 1.42% 4

residual.sugar 5.34% 3

fixed.acidity 0.32% 6

sulphates2 & sulphates3 6.19%

By comparing the result in the two panels (red versus white wine) of Table 2, we can make the
following conclusions: (i) the same set of measured physicochemical features in the experiment
of Cortez et al. (2009) has greater explanatory power for red wine (43.9% versus 30.7%); (ii)
the ranking of explanatory variables is different for the two types of wine with only one
exception which is alcohol (top for both); and (iii) the percentage contributions of each
variable differ significantly in magnitude for red versus white wine (e.g., alcohol, 25.80%
versus 77.16%; sulphates, 13.82% versus 0.51%; volatile.acidity, 7.12% versus 20.39%).
These insights drawn from our goodness-of-fit analysis may be useful to help us understand
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how physicochemical features influence wine ratings and how the influence may be different
depending on the type of wine. The percentage contributions and ranking of physicochemical
features may be used to guild or even devise the wine making process.

6. Summary

In this paper, we have developed the R package SurrogateRsq for categorical data goodness-
of-fit analysis using the surrogate R2. The package applies to probit/logistic regression mod-
els, and it is compatible with commonly used R packages for binary and ordinal data analysis.
With SurrogateRsq, we are able to obtain point estimate and the interval estimates of the
surrogate R2. An importance ranking table for all explanatory variables can be produced as
well. These new features can be used in conjunction with other R packages developed for
variable selection and model diagnostics. This “whole-analysis” is summarized in a workflow
diagram, which can be followed in practice for categorical data analysis. To examine the
utility of this package in real data analysis, we have used a wine rating dataset as an ex-
ample and provided sample code. In addition, we have used the package SurrogateRsq to
demonstate that the surrogate R2 allows us to compare different models trained from the red
wine sample and white wine sample. The comparison has led to new findings and insights
that deepen our understanding of how physicochemical features influence the wine quality.
The result suggests that our package can be used in a similar way to analyze multiple studies
(and/or models) that address the same or similar scientific or business question.

References

Breheny P (2013). “ncvreg: Regularization paths for scad-and mcp-penalized regression
models.” R package version, 2, 6–0. URL https://pbreheny.github.io/ncvreg/.

Breheny P, Breheny MP (2014). “Package ‘grpreg’.” URL https://pbreheny.github.io/

grpreg/.

Cheng C, Wang R, Zhang H (2021). “Surrogate Residuals for Discrete Choice Models.”
Journal of Computational and Graphical Statistics, 30(1), 67–77. doi:https://doi.org/

10.1080/10618600.2020.1775618.

Christensen RHB (2019). “ordinal—Regression Models for Ordinal Data.” R package version
2019.12-10. https://CRAN.R-project.org/package=ordinal, URL http://www2.uaem.mx/

r-mirror/web/packages/ordinal/.

Cortez P, Cerdeira A, Almeida F, Matos T, Reis J (2009). “Modeling Wine Preferences by
Data Mining from Physicochemical Properties.” Decision Support Systems, 47(4), 547–553.
doi:10.1016/j.dss.2009.05.016.

Cox D, Snell E (1989). Analysis of Binary Data, volume 32. doi:https://doi.org/10.

1201/9781315137391.

Cox DR, Wermuth N (1992). “A Comment on the Coefficient of Determination for Binary Re-
sponses.” The American Statistician, 46(1), 1–4. doi:10.1080/00031305.1992.10475836.

https://pbreheny.github.io/ncvreg/
https://pbreheny.github.io/grpreg/
https://pbreheny.github.io/grpreg/
https://doi.org/https://doi.org/10.1080/10618600.2020.1775618
https://doi.org/https://doi.org/10.1080/10618600.2020.1775618
http://www2.uaem.mx/r-mirror/web/packages/ordinal/
http://www2.uaem.mx/r-mirror/web/packages/ordinal/
https://doi.org/10.1016/j.dss.2009.05.016
https://doi.org/https://doi.org/10.1201/9781315137391
https://doi.org/https://doi.org/10.1201/9781315137391
https://doi.org/10.1080/00031305.1992.10475836


18 SurrogateRsq: an R package for categorical data goodness-of-fit analysis

Efron B (1978). “Regression and ANOVA with Zero-one Data: Measures of Residual
Variation.” Journal of the American Statistical Association, 73(361), 113–121. doi:

10.1080/01621459.1978.10480013.

Fan J, Lv J (2008). “Sure Independence Screening for Ultrahigh Dimensional Feature
Space.” Journal of the Royal Statistical Society: Series B (Statistical Methodology),
70(5), 849–911. doi:10.1111/j.1467-9868.2008.00674.x@10.1111/(ISSN)1467-9868.

TOP_SERIES_B_RESEARCH.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization paths for generalized linear
models via coordinate descent.” Journal of Statistical Software, 33(1), 1. URL https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/.

Greenwell BM, McCarthy AJ, Boehmke BC, Liu D (2018). “Residuals and Diagnostics for
Binary and Ordinal Regression Models: An Introduction to the sure Package.” The R
Journal, 10(1), 381–394. doi:10.32614/RJ-2018-004.

Hagle TM, Mitchell GE (1992). “Goodness-of-Fit Measures for Probit and Logit.” American
Journal of Political Science, 36(3), 762–784. doi:10.2307/2111590.

Hu B, Shao J, Palta M (2006). “Pseudo-R2 in Logistic Regression Model.” Statistica Sinica,
16(3), 847–860. URL https://www.jstor.org/stable/24307577.

Laitila T (1993). “A Pseudo-R2 Measure for Limited and Qualitative Dependent Variable
Models.” Journal of Econometrics, 56(3), 341–356. URL https://doi.org/10.1016/

0304-4076(93)90125-O.

Li S, Zhu X, Chen Y, Liu D (2021). “PAsso: an R Package for Assessing Partial Association
between Ordinal Variables.” The R Journal, 13(2), 135. doi:10.32614/RJ-2021-088.

Liu D, Li S, Yu Y, Moustaki I (2021). “Assessing Partial Association Between Ordinal
Variables: Quantification, Visualization, and Hypothesis Testing.” Journal of the American
Statistical Association, 116(534), 955–968. doi:10.1080/01621459.2020.1796394.

Liu D, Zhang H (2018). “Residuals and Diagnostics for Ordinal Regression Models: A Sur-
rogate Approach.” Journal of the American Statistical Association, 113(522), 845–854.
doi:10.1080/01621459.2017.1292915.

Liu D, Zhu X, Greenwell B, Lin Z (2023). “A new goodness-of-fit measure for probit models:
Surrogate R2.” British Journal of Mathematical and Statistical Psychology, 76(1), 192–210.
URL https://doi.org/10.1111/bmsp.12289.

Liu I, Agresti A (2005). “The Analysis of Ordered Categorical Data: An Overview and a
Survey of Recent Developments (with discussion).” Test, 14(1), 1–73. doi:https://doi.

org/10.1007/BF02595397.

Lumley T, Lumley MT (2013). “Package ‘leaps’.” Regression subset selection. Thomas Lum-
ley Based on Fortran Code by Alan Miller. Available online: http://CRAN. R-project.
org/package= leaps (Accessed on 18 March 2018). URL https://cran.r-project.org/

web/packages/leaps/index.html.

https://doi.org/10.1080/01621459.1978.10480013
https://doi.org/10.1080/01621459.1978.10480013
https://doi.org/10.1111/j.1467-9868.2008.00674.x@10.1111/(ISSN)1467-9868.TOP_SERIES_B_RESEARCH
https://doi.org/10.1111/j.1467-9868.2008.00674.x@10.1111/(ISSN)1467-9868.TOP_SERIES_B_RESEARCH
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/
https://doi.org/10.32614/RJ-2018-004
https://doi.org/10.2307/2111590
https://www.jstor.org/stable/24307577
https://doi.org/10.1016/0304-4076(93)90125-O
https://doi.org/10.1016/0304-4076(93)90125-O
https://doi.org/10.32614/RJ-2021-088
https://doi.org/10.1080/01621459.2020.1796394
https://doi.org/10.1080/01621459.2017.1292915
https://doi.org/10.1111/bmsp.12289
https://doi.org/https://doi.org/10.1007/BF02595397
https://doi.org/https://doi.org/10.1007/BF02595397
https://cran.r-project.org/web/packages/leaps/index.html
https://cran.r-project.org/web/packages/leaps/index.html


Journal of Statistical Software 19

McFadden D (1973). “Conditional Logit Analysis of Qualitative Choice Behavior.” In
P Zarembka (ed.), Frontiers in Econometrics, pp. 105–142. URL https://eml.berkeley.

edu/reprints/mcfadden/zarembka.pdf.

McKelvey RD, Zavoina W (1975). “A Statistical Model for the Analysis of Ordinal Level
Dependent Variables.” Journal of Mathematical Sociology, 4(1), 103–120. URL https:

//doi.org/10.1080/0022250X.1975.9989847.

Nagelkerke NJ (1991). “A Note on a General Definition of the Coefficient of Determination.”
Biometrika, 78(3), 691–692. doi:https://doi.org/10.1093/biomet/78.3.691.

Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB (2013). “Pack-
age ‘mass’.” CRAN R, 538, 113–120. URL http://www.stats.ox.ac.uk/pub/MASS4/.

Saldana DF, Feng Y (2018). “SIS: An R package for sure independence screening in ultrahigh-
dimensional statistical models.” Journal of Statistical Software, 83, 1–25. doi:10.18637/

jss.v083.i02.

Simon N, Friedman J, Hastie T, Tibshirani R (2011). “Regularization paths for Cox’s pro-
portional hazards model via coordinate descent.” Journal of Statistical Software, 39(5), 1.
doi:10.18637/jss.v039.i05.

Tibshirani R (1996). “Regression shrinkage and selection via the lasso.” Journal of the Royal
Statistical Society: Series B (Methodological), 58(1), 267–288. doi:https://doi.org/10.

1111/j.2517-6161.1996.tb02080.x.

Tjur T (2009). “Coefficients of Determination in Logistic Regression Models—A New Pro-
posal: The Coefficient of Discrimination.” The American Statistician, 63(4), 366–372. URL
https://doi.org/10.1198/tast.2009.08210.

Veall MR, Zimmermann KF (1996). “Pseudo-R2 Measures for Some Common Limited
Dependent Variable Models.” Journal of Economic Surveys, 10(3), 241–259. doi:

10.1111/j.1467-6419.1996.tb00013.x.

Wurm MJ, Rathouz PJ, Hanlon BM (2021). “Regularized Ordinal Regression and the or-
dinalNet R Package.” Journal of Statistical Software, 99, 1–42. ISSN 1548-7660. doi:

10.18637/jss.v099.i06. URL https://doi.org/10.18637/jss.v099.i06.

Yee TW, et al. (2010). “The VGAM Package for Categorical Data Analysis.” Journal of
Statistical Software, 32(10), 1–34. doi:10.18637/jss.v032.i10.

Zheng B, Agresti A (2000). “Summarizing the Predictive Power of a Generalized Linear
Model.” Statistics in Medicine, 19(13), 1771–1781. URL https://doi.org/10.1002/

1097-0258(20000715)19:13<1771::AID-SIM485>3.0.CO;2-P.

Zhu X, Li S, Chen Y, Liu D (2020). “PAsso: an R Package for Assessing Partial Association
between Ordinal Variables.” R package Version 0.1.9. URL https://xiaoruizhu.github.

io/PAsso/.

Zou H (2006). “The Adaptive Lasso and Its Oracle Properties.” Journal of the American
Statistical Association, 101(476), 1418–1429. doi:10.1198/016214506000000735.

https://eml.berkeley.edu/reprints/mcfadden/zarembka.pdf
https://eml.berkeley.edu/reprints/mcfadden/zarembka.pdf
https://doi.org/10.1080/0022250X.1975.9989847
https://doi.org/10.1080/0022250X.1975.9989847
https://doi.org/https://doi.org/10.1093/biomet/78.3.691
http://www.stats.ox.ac.uk/pub/MASS4/
https://doi.org/10.18637/jss.v083.i02
https://doi.org/10.18637/jss.v083.i02
https://doi.org/10.18637/jss.v039.i05
https://doi.org/https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1198/tast.2009.08210
https://doi.org/10.1111/j.1467-6419.1996.tb00013.x
https://doi.org/10.1111/j.1467-6419.1996.tb00013.x
https://doi.org/10.18637/jss.v099.i06
https://doi.org/10.18637/jss.v099.i06
https://doi.org/10.18637/jss.v099.i06
https://doi.org/10.18637/jss.v032.i10
https://doi.org/10.1002/1097-0258(20000715)19:13<1771::AID-SIM485>3.0.CO;2-P
https://doi.org/10.1002/1097-0258(20000715)19:13<1771::AID-SIM485>3.0.CO;2-P
https://xiaoruizhu.github.io/PAsso/
https://xiaoruizhu.github.io/PAsso/
https://doi.org/10.1198/016214506000000735


20 SurrogateRsq: an R package for categorical data goodness-of-fit analysis

Zou H, Hastie T (2005). “Regularization and Variable Selection via the Elastic Net.” Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320. doi:

10.1111/j.1467-9868.2005.00503.x.

https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x


Journal of Statistical Software 21

7. Supplementary materials

7.1. Supplementary code for Section 5.1

In this section, we provide sample code for variable selection using the step-wise selection
method and the regularization method with an elastic net penalty.

The step-wise selection methods starts with a null model (null_model) with an intercept only.
The largest model we specify is the “naive model” with all explanatory variables. The result
below shows that this method selects the same variables as the exhaustive search method.

R> null_model <- polr(quality ~ 1, data = RedWine2, method = "probit")

R> model_stepwise <- step(object = null_model,

+ scope = list(lower = null_model, upper = naive_model),

+ direction = 'both',

+ trace = 0)

R> results <- coef(model_stepwise)

R> # Print out the excluded covariates:

R> names(RedWine2[,-1])[! names(RedWine2[,-1]) %in% names(results)]

[1] "fixed.acidity" "citric.acid" "residual.sugar" "density"

We also use the function ordinalNet() in the R package ordinalNet to fit a cumulative
probit model with an elastic net penalty. The result below shows it only excludes a single
variable which is density.

R> library(ordinalNet)

R> x <- as.matrix(RedWine2[ , !names(RedWine2) %in% c("quality")])

R> model_Net <- ordinalNet(x = x,

+ y = RedWine2$quality,

+ family = "cumulative",

+ link. = "probit",

+ nLambda = 20)

R> results <- coef(model_Net, matrix=TRUE)[-1,1]

R> # Print out the excluded covariates:

R> names(results[results == 0])

[1] "density"

7.2. Supplementary Figure for Section 5.1

The figure below contains diagnotic plots for the full model developed in Section 5.1 after
performing variable selection and model diagnostics.
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Figure 4: Plots of surrogate residuals versus each of the explanatory variables for the full
model after adding the squared and cubic terms of sulphates.
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