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Abstract

We review the theory and application of generalised linear autoregressive moving av-
erage observation driven models for time series of counts with explanatory variables and
describe the estimation of these models using the glarma R-package. Diagnostic and
graphical methods are also illustrated by several examples.
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1. Introduction

In the past 15 years there has been substantial progress made in developing regression models
with serial dependence for discrete valued response time series such as arise for modelling
Bernoulli, binomial, Poisson or negative binomial counts. In this paper we consider the
GLARMA (generalized linear autoregressive moving average) subclass of observation driven
models in detail. Assessing and modelling dependence when the outcomes are discrete ran-
dom variables is particularly challenging. A major objective of using GLARMA models is the
making of inferences concerning regression variables while ensuring that dependence is de-
tected and properly accounted for. GLARMA models are relatively easy to fit and provide an
accessible and rapid way to detect and account for serial dependence in regression modelling
of time series.

1.1. Generalized state space models

The GLARMA models considered here are a subclass of generalized state space models for
non-Gaussian time series described in Davis, Dunsmuir, and Wang (1999), Brockwell and
Davis (2010) and Durbin and Koopman (2012) for example. A generalized state-space model
for a time series {Yt, t = 1, 2, . . .} consists of an observation variable and state variable. The
model is expressed in terms of conditional probability distributions for the observation and
state variables. Such models can be loosely characterized as either parameter driven or
observation driven. The observation specification is the same for both models.

For parameter driven models the serial dependence in the state equation is governed by a
latent, usually stationary, time series that cannot be observed directly and which evolves
independently of past and present values of the observed responses or the covariates. On the
other hand, as the name implies, in observation driven models, the random component of Wt

depends on past observations {Ys, s < t}.
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Estimation of parameter driven models requires very high dimensional integrals to be evalu-
ated or approximated using asymptotic expansions, simulation methods, numerical integration
or all three. Because of this they can be difficult to fit and for routine model building in which
many potential regressors need to be considered and evaluated for significance, the parameter
driven models for count time series are not yet ready for general use.

On the other hand, the observation driven models considered here are much easier to fit
because the likelihood is conditionally specified as a product of conditional distributions which
belong to the exponential family and for which the natural parameter is readily calculated via
recursion. As a result they are relatively straightforward to apply in practical settings with
numerous regressors and long time series.

The outline of the remainder of the paper is as follows. Section 2 provides the necessary
theoretical background for GLARMA models. It describes the various combinations of model
elements (response distributions, dependence structures and predictive residuals) that are
currently supported in the glarma package. Options for initializing and obtaining maximum
likelihood estimates using a form of Fisher scoring or Newton-Raphson iterations are de-
scribed. Issues of parameter identifiability and convergence properties of GLARMA models
and the maximum likelihood estimates are also reviewed to guide users in the application of
these models. Section 3 describes the various modelling functions available in the package.
Section 4 describes the built-in model diagnostic procedures and plotting functions. Section
5 provides several examples illustrating the use of the package on real data sets.

2. Theory of GLARMA models

The glarma package provides functionality for estimating regression relationships between a
vector of regressors (covariates, predictors) and a discrete valued response. In time series
regression modelling it is typically the case that there is serial dependence. This package
models the serial dependence using the GLARMA class of observation driven models and
provides valid inference for the regression model components.

Let there be N consecutive times at which the response and regressor series are observed. The
response series are observations on the random variables {Yt : t = 1, . . . , N} and associated
with these are K-dimensional vectors of regressors xt observed also for t = 1, . . . , N . We let
Ft = {Ys : s < t, xs : s ≤ t} be the past information on the response series and the past and
present information on the regressors. In general the conditional distribution of Yt given Ft
is given in exponential family form as

f(yt|Wt) = exp {ytWt − atb(Wt) + ct} (1)

where at and ct are sequences of constants possibly depending on the observations yt. Infor-
mation in Ft is summarized in the state variable Wt. Details are provided below for specific
distributions available in glarma.

Note that (1) is not the fully general form of the exponential family (see McCullagh and
Nelder 1989) in that it does not include an over-dispersion parameter and the canonical link
is used. It follows from (1) that the conditional means and variances of the responses are
µt := E(Yt|Wt) = atḃ(Wt) and σ2t := var(Yt|Wt) = atb̈(Wt). The negative binomial case is
special—see below.
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Observation driven models take various forms (see Benjamin, Rigby, and Stasinopoulos 2003,
for a general discussion). Here we focus on the case where the state vector in (1) is of the
general form

Wt = xTt β + Zt. (2)

In addition to the regression parameters β we assume that there are other parameters ψ which
specify the process {Zt} as discussed below.

2.1. GLARMA dependence structure

Serial dependence in the response process can be introduced via Zt in the state process using
linear combinations of past predictive residuals et as

Zt =
∞∑
j=1

γjet−j (3)

The predictive residuals are defined as

et =
Yt − µt
νt

. (4)

for some scaling sequence {νt}—see Section 2.3 for choices currently supported. Note that
these are martingale differences, hence are zero mean and uncorrelated. When νt is set to the
conditional standard deviation of Yt the et are also unit variance, hence are weakly stationary
white noise.

One parsimonious way in which to parameterize the infinite moving average weights γj in (3),
is to allow them to be the coefficients in an autoregressive-moving average filter. Specifically,
set

∞∑
j=1

γjζ
j = θ(ζ)/φ(ζ)− 1,

where φ(ζ) = 1−φ1ζ−· · ·−φpζp and θ(ζ) = 1+θ1ζ+· · ·+θqζq are the respective autoregressive
and moving average polynomials of the ARMA filter, each having all zeros outside the unit
circle. It follows that {Zt} satisfies the ARMA-like recursions,

Zt =

p∑
i=1

φi(Zt−i + et−i) +

q∑
i=1

θiet−i. (5)

The {Zt} defined in this way can be thought of as the best linear predictor of a stationary
invertible ARMA process with driving noise specified by the sequence {et} of scaled deviations
of count responses from their conditional mean given the past responses and the past and
current regressors. This specification allows recursive calculation (in time t) of the state
equation. The model is referred to as a GLARMA model (see (Davis, Dunsmuir, and Streett
2003)). Shephard (1995) provides the first example of such a model class.

2.2. Response distributions

Specific examples of exponential family members of the form (1) that are currently supported
are Poisson, negative binomial and binomial which includes Bernoulli as a special case.
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Poisson: Here at ≡ 1, b(Wt) = exp(Wt), ct = − log yt! and the canonical link is g(µ) = ln(µ).
Note that µt = exp(Wt) and σ2t = exp(Wt).

Binomial/Bernoulli: Let the number of trials at time t be mt and πt = P (Yt = 1|Wt). Then
at = mt, b(θ) = ln(1 + exp(Wt)) and ct = log

(
mt

yt

)
. The canonical link is the logit so that

Wt = log(πt/(1 − πt)). Note that µt = mtπt and σ2t = mtπt(1 − πt). The Bernoulli case has
mt ≡ 1.

Negative binomial: Let µt = exp(Wt). The glarma package uses the negative binomial density
in the form

f(yt|Wt, α) =
Γ(α+ yt)

Γ(α)Γ(yt + 1)

[
α

α+ µt

]α [ µt
α+ µt

]yt
. (6)

Note that µt = exp(Wt) and σ2t = µt + µ2t /α. As α → ∞ the negative binomial density
converges to the Poisson density. Also note that if α is known, this density can be put in the
one parameter exponential family with appropriate definitions of θt, b(θt), a(ψ), ct(yt, ψ). If
α is not known then (6) is not a member of the one parameter exponential family.

2.3. Types of GLARMA residuals

GLARMA predictive residuals are of the form (4) where ν(Wt) is a scaling function. Currently
several choices for this are supported.

Pearson Scaling Here νt = νP,t where

νP,t = [atb̈(Wt)]
0.5

in which case Pearson residuals result.

Score-type Scaling These replace conditional standard deviation by conditional variances

νS,t = atb̈(Wt)

resulting in the ‘score-type’ residuals used in Creal, Koopman, and Lucas (2008).

Identity Scaling A third option, which allows some form of the BARMA (binary ARMA)
models considered in Wang and Li (2011) to be fit is to use no scaling with

νI,i = 1.

For the Poisson response distribution GLARMA model, failure to scale by the variance or
standard deviation function will lead to unstable Poisson means (that diverge to infinity or
collapse to zero as an absorbing state for instance) and existence of stationary and ergodic
solutions to the recursive state equation is not assured—see Davis et al. (1999), Davis et al.
(2003) and Davis, Dunsmuir, and Streett (2005) for details. For the binomial situation this
lack of scaling should not necessarily lead to instability in the success probability as time
evolves since the success probabilities, pt, and observed responses, Yt, are both bounded
between 0 and 1. Thus degeneracy can only arise if the regressors xt become unbounded from
below or above. As recommended in Davis et al. (1999) temporal trend regressors should be
scaled using a factor relating to sample size n.
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2.4. The GLARMA likelihood

Given n successive observations {yt : t = 1, . . . , n} on the response series the likelihood is
constructed as the product of conditional densities of Yt given Ft. The state vector Wt at
each time embodies these conditioning variables and so the log likelihood is given by

l(δ) =

n∑
t=1

log fYt|Wt
(yt|Wt; δ). (7)

For the Poisson and binomial response distributions the log-likelihood (7) is

l(δ) =
n∑
t=1

{ytWt(δ)− atb(Wt(δ)) + ct} (8)

where δ = (β, φ, θ).

For the negative binomial response distribution the log-likelihood is more complicated because
the shape parameter α also has to be estimated along with β, φ and θ. We then let δ =
(β, φ, θ, α).

Note that et in (4), the Zt in (5) and thus the Wt in (2) are functions of the unknown parameter
δ and hence need to be recomputed for each iteration of the likelihood optimization. Thus
in order to calculate the likelihood and its derivatives, recursive expressions are needed to
calculate et, Zt and Wt as well as their first and second partial derivative with respect to δ.
Expressions for these recursive formulae are available in Davis et al. (2005) for the Poisson
case. Corresponding formulae for the binomial case were derived in Lu (2002) and for the
negative binomial case in Wang (2004). The essential computational cost is in the recursions
for Zt and Wt and their first and second derivative with respect to δ. Fortunately, these require
identical code for the various response distributions and definitions of predictive residuals et.

For calculation of the Zt in (5), initializing conditions for the recursions must be used. The
current implementation in glarma is to set et = 0 and Zt = 0 for t ≤ 0 ensuring that the
conditional and unconditional expected values of et are zero for all t.

The likelihood is maximized from a suitable starting value of the parameter δ using a version
of Fisher scoring iteration or by Newton-Raphson iteration. For a given value of δ let the
vector of first derivatives with respect to δ of the log-likelihood (7) be

d(δ) =
∂l(δ)

∂δ

and the second derivative matrix be

DNR(δ) =
∂2l(δ)

∂δ∂δ>
, (9)

where the matrix of second derivatives of the log-likelihood is (in the Poisson and binomial
response cases) given by

DNR(δ) =
n∑
t=1

[yt − atḃ(Wt)]
∂2Wt

∂δ∂δ>
−

n∑
t=1

atb̈(Wt)
∂Wt

∂δ

∂Wt

∂δ>
. (10)
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and ḃ(u) and b̈(u) are the first and second derivatives respectively of the function b(u) with
respect to the argument u.

Using the fact that, at the true parameter value δ, E[yt− atḃ(Wt)|Ft] = 0 the expected value
the first summation in (10) is zero and hence the expected value of the matrix of second
derivatives is E[DFS(δ)] where

DFS(δ) = −
n∑
t=1

atb̈(Wt)
∂Wt

∂δ

∂Wt

∂δ>
. (11)

Note also that due to the martingale difference property of the predictive residuals we also
have E[DNR(δ)] = −E[d(δ)d(δ)>]. While these expectations cannot be computed in closed
form, expression (11) requires first derivatives only and is used in package glarma as the basis
for the approximate Fisher scoring method.

Thus, if δ(k) is the parameter vector at the current iterate k, the Newton-Raphson updates
proceed using

δ(k+1) = δ(k) −DNR(δ(k))−1d(δ(k)) (12)

and the approximate Fisher scoring updates use DFS in place of DNR

Given a specified tolerance TOL, iterations continue until the largest gradient of the log-
likelihood satisfies maxi |di(δ(k)|) ≤ TOL or a maximum number of iterations MAXITER is
surpassed. At termination we let δ̂ = δ(k+1) and call this the “maximum likelihood estimate”
of δ.

By default, the iterations in (12) are initialized using the generalized linear model (GLM)
estimates for β and zero initial values for the autoregressive moving average terms. For the
negative binomial case β and α are initialized using a call to glm.nb() from the package
MASS (see Venables and Ripley (2002)). Convergence in the majority of cases is rapid. Users
may optionally specify initial parameter values of their own choice.

2.5. Parameter identifiability

The GLARMA component Zt of the state variable given in (5) can be rewritten as

Zt =

p∑
i=1

φiZt−i +

q̃∑
i=1

θ̃iet−i. (13)

where q̃ = max(p, q) and

1. If p ≤ q, θ̃j = θj + φj for j = 1, . . . , p and θ̃j = θj for j = p+ 1, . . . , q.

2. If p > q, θ̃j = θj + φj for j = 1, . . . , q and θ̃j = φj for =q + 1, . . . , p.

When pre-observation period values are set to zero (that is Zt = 0 for t ≤ 0 and et = 0 for
t ≤ 0) then if and only if θ̃j = 0 for j = 1, . . . , p̃ the recursion (13) would result in Zt = 0 for
all t and hence there is no serial dependence in the GLARMA model. This is is equivalent to
φj = −θj for j = 1, . . . , p and θj = 0 for j = p+ 1, . . . , q̃.

Consequently a null hypothesis of no serial dependence requires only these constraints on the
θ and φ parameters. In some situations this means that under the null hypothesis of no serial
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dependence there are nuisance parameters which cannot be estimated. This has implications
for convergence of the iterations required to optimize the likelihood and on testing that there
is no serial dependence in the observations (other than induced by the regression component
x>t β).

When p > 0 and q = 0 (equivalent to an ARMA(p, p) specification with constraint θj = φj
or a pure MA with p = 0 and q > 0 then identification issues do not arise and the hypothesis
of no serial dependence corresponds to the hypothesis that φj = 0 for j = 1, . . . , p in the first
case and θj = 0 for j = 1, . . . , q in the second case. The provided likelihood ratio and Wald
tests (see Section 4.1 for further details) will have an asymptotic chi-squared distribution with
correct degrees of freedom.

In cases where p > 0 and q > 0 some caution is advised when fitting models and testing that
serial dependence is not present. To simplify the discussion we focus on the case where p = q;

1. If there is no serial dependence in the observations but p = q > 0 is specified then
there is a strong possibility that the likelihood optimization for this overspecified model
will not converge because the likelihood surface will be ‘ridge-like’ along the line where
φj = −θj . This issue is classical for standard ARMA models. Similarly if the degree
of serial dependence is of lower order than that specified for the GLARMA model
identifiability issues and lack of convergence of the likelihood optimizing recursions is
likely to occur. Following from this it is highly recommended that users start with
low orders for p and q and initially avoid specifying them to be equal. Once stability
of estimation is reached for a lower order specification increasing the values of p or q
could be attempted. Lack of identifiability typically manifests itself in the matrix of
second derivatives DNR or the approximate Fisher scoring version DFS becoming close
to singular or even non-positive definite. The state variable Wt can also degenerate to
±∞ for which an error code in the output from the glarma() call is provided.

2. The likelihood ratio test that there is no serial dependence versus the alternative that
there is GLARMA like serial dependence with p = q > 0 will not have a standard chi-
squared distribution because the parameters φj for j = 1, . . . , p are nuisance parameters
which cannot be estimated under the null hypothesis. Testing methods such as proposed
in Hansen (1996) need to be developed for this situation.

2.6. Stochastic properties of GLARMA models

Means, variances and autocovariances for the state process {Wt} can be readily derived us-
ing the definition of Zt in (3)—see (Davis et al. 1999). For the Poisson response case the
corresponding means, variance and autocovariances for the count response series {Yt} can
be derived approximately. Additionally an approximate interpretation of the regression co-
efficients β can be given—see (Davis et al. 2003). Similar results could be derived for the
negative binomial response case. For binomial and Bernoulli responses, calculation of means,
variances, autocovariances for the response series and interpretation of regression coefficients
is not straightforward. This is a typical issue for interpretation of random effects models and
transition models in the binomial or Bernoulli case—see Diggle, Heagerty, Liang, and Zeger
(2002) for example.

To date the stationarity and ergodicity properties of the GLARMA model are only partially
understood. These properties are important in order to ensure that the process is capable of
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generating sample paths that do not degenerate to zero or do not explode as time progresses,
as well as for establishing the large sample distributional properties of estimates of the pa-
rameters. Davis et al. (2003) provide partial results for perhaps the simplest of all possible
models for Poisson responses specified with p = 0, q = 1 and x>t β = β. Results for simple
examples of the stationary Bernoulli case are given in Streett (2000).

2.7. Fitted values

There are two concepts of fitted values currently supported for the GLARMA model. The
first is defined as the estimated conditional mean function µ̂t at time t calculated using the
maximum likelihood estimates δ̂. Thus

µ̂t = mtḃ(x
>
t β̂ + Ẑt) (14)

where Ẑt are calculated using δ̂ in (5). These fitted values combine the regression fit (fixed
effects) together with the contribution from weighted sums of past estimated predictive resid-
uals.

Because for GLARMA models the unconditional mean function is difficult to obtain exactly
in all cases an estimated unconditional mean function of t is not provided. Instead, for the
second concept of fitted values, the fitted value from the regression term only is suggested as
a guide to the fit without the effect of random variation due to Zt. This is defined to be

µ̃t = mtḃ(x
>
t β̂) (15)

We refer to this as the “fixed effects fit” in plotting functions below. Note that this is not
an estimate of the unconditional mean even in the Poisson case (arguably the most tractable
for this calculation)—the theoretical unconditional mean for this case is approximated by
exp(x>t β+ν2/2) where ν2 =

∑∞
l=1 γ

2
i —see Davis et al. (2003) for details. A similar calculation

for the binomial case is not available. Hence, in view of these theoretical constraints, the use
of the fixed effects fit seems a simple and sensible alternative to the conditional mean µ̂t given
by (14).

2.8. Distribution theory for likelihood estimation

For inference in the GLARMA model it is assumed that the central limit theorem holds so
that

δ̂
d
≈ N(δ, Ω̂) (16)

where the approximate covariance matrix is estimated by

Ω̂ = −DNR(δ̂)−1 (17)

in the case of Newton-Raphson and similarly with DNR replaced by DFS in the case of Fisher
scoring. Thus a standard error for the maximum likelihood estimates of the ith component

of δ is computed using Ω̂
1/2
ii .

There have been a number of claims in the literature concerning a central limit theorem for
models of this type. However all of these make assumptions concerning convergence of key
quantities all of which require the ergodicity to be established which has not been done in
generality as yet. The central limit theorem for the maximum likelihood parameter estimates



William T.M. Dunsmuir, David J. Scott 9

is rigorously established only in the stationary Poisson response case in Davis et al. (2003)
and in the Bernoulli stationary case in Streett (2000). Simulation results are also reported in
Davis et al. (1999, 2003) for non-stationary Poisson models. Other simulations not reported
in the literature support the supposition that the estimates δ̂ have a multivariate normal
distribution for large samples for a range of regression designs and for the various response
distributions considered here.

A central limit theorem for the maximum likelihood estimators is currently not available
for the general model. Regardless of the technical issues involved in establishing a general
central limit theorem the above approximate result seems plausible since, for these models
the log-likelihood is a sum of elements in a triangular array of martingale differences.

For nested models likelihood ratio test statistics can be calculated and compared to the
assumed chi-squared asymptotic distribution in the usual way. The above asymptotic result
can be used to obtain an approximate chi-squared distribution for a Wald test that subsets
of δ take specified values. Let δ(1) specify a subset of δ that is hypothesized to take a specific

value δ
(1)
0 . The Wald test is constructed as

W 2 = [δ̂(1) − δ(1)0 ]>[Ω̂(1)]−1[δ̂(1) − δ(1)0 ] (18)

where Ω̂(1) is the submatrix corresponding to δ
(1)
0 of the estimated asymptotic covariance

matrix of (17).

Further details on implementation of these tests in glarma are given in Section 4.1.

3. Modelling functions

There are seven modelling functions for fitting GLARMA models, falling into three groups:

Poisson: glarmaPoissonPearson() and glarmaPoissonScore().

Binomial: glarmaBinomialIdentity(), glarmaBinomialPearson() and
glarmaBinomialScore().

Negative Binomial: glarmaNegBinPearson() and glarmaNegBinScore().

The second component of the name indicates the distribution used for the counts and the third
component the residuals used in the fitting routine. A call to glarma() results in a call to the
appropriate fitting routine, as determined by the values of the arguments type, and residuals

supplied to the glarma() call. Pearson residuals are used by default. Two iterative methods
are available for the optimization of the log-likelihood, Fisher Scoring (method = "FS") and
Newton-Raphson (method = "NR"), the default method being Fisher Scoring. The object
returned by any of the fitting routines is of class "glarma".

To specify the model in a call to glarma(), the response variable is given by the argument
y, and the matrix of predictors for the regression part of the model is given by the argument
X. The matrix X must include a column of ones to enable the fitting of a mean term in the
regression component of the model. Initial values can be given for the coefficients in the
regression component using the argument beta. If no initial values are provided, a call is
made to the corresponding generalized linear model to obtain initial regression coefficient
values.
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The ARMA component of the model is specified using the arguments phiLags and phiInit

(for the AR terms) and thetaLags and thetaInit (for the MA terms). For both the AR and
MA terms, the first argument of the pair of arguments specifies the orders of the lags which
are to be included in the model, and the second argument the initial values of the coefficients
for those lags.

When the counts are modeled using the negative binomial distribution, there is an additional
parameter, the shape parameter of the negative binomial, designated as α in the GLARMA
model. This parameter is called θ in the function glm.nb() from the package MASS, but
for GLARMA models θ refers to the moving average terms in the ARMA component of the
model. An initial value for α can be provided using the argument alphaInit. If no initial
value is provided, a call is made to glm.nb() from MASS. An initial value for the call to
glm.nb() can be supplied by giving a value to the argument alpha of glarma(). The default
value for alpha is 1.

Because the GLARMA model is fitted using numerical non-linear optimization, non-convergence
is a possibility. Two error codes are included in the object returned by the glarma() to alert
users to numerical problems with fitting. If the Fisher Scoring or Newton-Raphson iterations
fail to converge, errCode will be set to 1. This can result from non-identifiability of the
ARMA component of the model such as when the degrees and lags of both the AR and MA
components are specified to be the same, as discussed in Section 2.5. It is possible that for
certain values of the ARMA parameters the recursions calculating {Wt} diverge to ±∞. In
that case the value of WError will be set to 1 allowing the user to check for this condition
when the likelihood optimization fails to converge.

Once a fitted model object has been obtained, there are accessor functions available using S3
methods to extract the coefficients (coef(), or the alias coefficients()), the fitted values
(fitted() or the alias fitted.values()), the residuals (residuals() or the alias resid()),
the model frame (model.frame()), the number of observations (nobs()), the log-likelihood
(logLik()), and the AIC (extractAIC()). These are standard implementations of these
methods with the exception of coef(). This method takes an argument types which allows
the extraction of the ARMA coefficients (types = "ARMA"), or the regression coefficients
(types = "beta"), or both sets of coefficients (types = "all"), the default.

Other S3 methods available for an object of class "glarma" are print, summary, print.summary,
and plot.

4. Diagnostics

4.1. Likelihood ratio and Wald tests

In glarma, the likelihood ratio test and the Wald test tests that the serial dependence pa-
rameters ψ = (φ>, θ>)> are all equal to zero (that is tests H0 : ψ = 0 versus Ha : ψ 6= 0)
are provided by the function likTests(), which operates on an object of type “glarma”. The
likelihood ratio test compares the likelihood of the fitted GLARMA model with the likelihood
of the GLM model with the same regression structure. The same null hypothesis applies to
the Wald test, which is based on the Wald statistic defined in (18). Values of both statistics
are compared to the chi-squared distribution with degrees of freedom given by the number of
ARMA parameters. These degrees of freedom and associated chi-squared p values are correct
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under the situations discussed in Section 2.5.

Package users may also construct their own tailor made likelihood ratio tests by using the
reported log-likelihood (logLik()) for the two models under comparison and Wald tests W 2

in (18) using the appropriate submatrix of the reported estimated covariance matrix in (17)
available as glarmamod$cov.

4.2. Probability integral transformation

To examine the validity of the assumed distribution in the GLARMA model a number of au-
thors have suggested the use of the probability integral transformation (PIT), see for example
Czado, Gneiting, and Held (2009). Although the PIT applies to continuous distributions
and the distributions in GLARMA models are discrete, Czado et al. (2009) have provided
a non-randomized approach which has been implemented in the glarma package. There
are four functions involved: glarmaPredProb calculates conditional predictive probabilities;
glarmaPIT calculates the non-randomized PIT; histPIT plots a histogram of the PIT; and
qqPIT draws a Q-Q plot of the PIT. If the distribution selected for the model is correct,
then the histogram and Q-Q plot should resemble the histogram and Q-Q plot obtained when
sampling from the uniform distribution on [0, 1]. Of the two plots, the histogram is generally
more revealing. Deviations from the expected form of the Q-Q plot are often difficult to
discern.

To calculate the conditional predictive probabilities and the PIT the following formulae from
Czado et al. (2009) are used.

Given the counts {yt}, the conditional predictive probability function F (t)(.|yt) is given by

F (t)(u|yt) =


0, u ≤ F (yt − 1),
u− F (yt − 1)

F (yt)− F (yt − 1)
, F (yt − 1) ≤ u ≤ F (yt),

1, u > F (yt).

(19)

Here F (yt) and F (yt− 1) are the upper and lower conditional predictive probabilities respec-
tively.

Then the non-randomized PIT is defined as

F̄ (u) =
1

T − 1

T∑
t=2

F (t)(u|yt) (20)

To draw the PIT histogram, the number of bins, I, is chosen, then the height of the ith bin
is

fi = F̄

(
i

I

)
− F̄

(
i− 1

I

)
. (21)

The default number of bins in histPIT is 10. To help with assessment of the distribution, a
horizontal line is drawn on the histogram at height 1, representing the density function of the
uniform distribution on [0, 1].

The Q-Q plot of the PIT plots F̄ (u) against u, for u ∈ [0, 1]. The quantile function of the
uniform distribution on [0, 1] is also drawn on the plot for reference.
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Jung and Tremayne (2011) employ the above diagnostics as well as the randomized version
of PIT residuals to compare alternative competing count time series models for several data
sets.

4.3. Plots

The plot method for objects of class "glarma" produces six plots by default: a time series plot
with the observed values of the dependent variable, the fixed effects fit, and the GLARMA
fit; an ACF plot of the residuals; a plot of the residuals against time; a normal Q-Q plot; the
PIT histogram; and the Q-Q plot for the PIT. Any subset of these six plots can be produce
using the which argument. For example to omit both of the Q-Q plots (plots 4 and 6), set
which = c(1:3, 5). Arguments to the plot method are also provided to change properties
of lines in these plots, namely line types, widths, and colours.

5. Examples

There are four example data sets included in the glarma package. Sample analyses for all
these data sets are provided in either the help pages for the data sets or for the glarma()

function.

GLARMA models with Poisson counts have appeared previously in the literature, however
analyses using the binomial and negative binomial distributions are novel, so we concentrate
on those cases in this section.

5.1. Asthma data

This data set arose from a single hospital (at Campbelltown, as part of a larger study into
the relationship between atmospheric pollution and the number of asthma cases presenting
at emergency departments in the South West region of Sydney, Australia, see Davis et al.
(2003). A description of the columns in the data set is given in Table 5.1

Column Variable Description

1 Count Daily asthma counts
2 Intercept Vector of 1s
3 Sunday Dummy variable for Sundays
4 Monday Dummy variable for Mondays
5 CosAnnual cos(2πt/365), annual cosine term
6 SinAnnual sin(2πt/365), annual sine term
7 H7 Scaled, lagged and smoothed humidity
8 NO2max Maximum daily nitrogen oxide

9–16 T1.1990-T2.1993 Smooth shapes to capture school terms in each year

Table 1: The asthma data set

We fit a model with a moving average term at lag 7 with negative binomial counts. The initial
values of the regression coefficients are found by fitting the corresponding GLM model, and
the initial value of the shape parameter, α of the negative binomial distribution is taken as
0. Pearson residuals are used and fitting is by Newton-Raphson.
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> data(Asthma)

> y <- Asthma[, 1]

> X <- as.matrix(Asthma[, 2:16])

> glarmamod <- glarma(y, X, thetaLags = 7, type = "NegBin", method = "NR",

+ residuals = "Pearson", alphaInit = 0,

+ maxit = 100, grad = 1e-6)

> glarmamod

Call: glarma(y = y, X = X, type = "NegBin", method = "NR", residuals = "Pearson",

thetaLags = 7, alphaInit = 0, maxit = 100, grad = 1e-06)

Negative Binomial Parameter:

alpha

37.18948

GLARMA Coefficients:

theta_7

0.0439192

Linear Model Coefficients:

Intercept Sunday Monday CosAnnual

0.58397111 0.19455427 0.22998987 -0.21450079

SinAnnual H7 NO2max T1.1990

0.17728311 0.16843373 -0.10403564 0.19903008

T2.1990 T1.1991 T2.1991 T1.1992

0.13087274 0.08586775 0.17081829 0.25275886

T2.1992 T1.1993 T2.1993

0.30572120 0.43607062 0.11412029

Degrees of Freedom: 1460 Total (i.e. Null); 1444 Residual

Null Deviance: 1989.916

Residual Deviance: 1442.566

AIC: 4873.511

> summary(glarmamod)

Call: glarma(y = y, X = X, type = "NegBin", method = "NR", residuals = "Pearson",

thetaLags = 7, alphaInit = 0, maxit = 100, grad = 1e-06)

Pearson Residuals:

Min 1Q Median 3Q Max

-1.8491 -0.7406 -0.1754 0.6092 6.1776

Negative Binomial Parameter:
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Estimate Std.Error z-ratio Pr(>|z|)

alpha 37.19 25.44 1.462 0.144

GLARMA Coefficients:

Estimate Std.Error z-ratio Pr(>|z|)

theta_7 0.04392 0.01936 2.269 0.0233 *

Linear Model Coefficients:

Estimate Std.Error z-ratio Pr(>|z|)

Intercept 0.58397 0.06331 9.225 < 2e-16 ***

Sunday 0.19455 0.05760 3.377 0.000732 ***

Monday 0.22999 0.05642 4.076 4.57e-05 ***

CosAnnual -0.21450 0.03965 -5.410 6.31e-08 ***

SinAnnual 0.17728 0.04153 4.269 1.96e-05 ***

H7 0.16843 0.05634 2.990 0.002794 **

NO2max -0.10404 0.03392 -3.067 0.002163 **

T1.1990 0.19903 0.05845 3.405 0.000662 ***

T2.1990 0.13087 0.05897 2.219 0.026477 *

T1.1991 0.08587 0.06746 1.273 0.203058

T2.1991 0.17082 0.05951 2.871 0.004096 **

T1.1992 0.25276 0.05669 4.459 8.24e-06 ***

T2.1992 0.30572 0.05103 5.991 2.08e-09 ***

T1.1993 0.43607 0.05233 8.334 < 2e-16 ***

T2.1993 0.11412 0.06269 1.821 0.068679 .

Null deviance: 1989.9 on 1460 degrees of freedom

Residual deviance: 1442.6 on 1444 degrees of freedom

AIC: 4873.511

Number of Newton Raphson iterations: 6

LRT and Wald Test:

Alternative hypothesis: model is a GLARMA process

Null hypothesis: model is a GLM with the same regression structure

Statistic p-value

LR Test 7.047 0.00794 **

Wald Test 5.147 0.02329 *

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We note that virtually all the regression terms in the model are significant, most being highly
significant. The moving average term is significant and both the tests indicate that there is
a need to fit a GLARMA model rather than a simple GLM. The value of α is quite large,
suggesting that a Poisson model might provide adequate fit.

The plot method for an object of class "glarma" shows six plots by default: a time series plot
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Figure 1: Diagnostic plots for the asthma model

with observed values of the dependent variable, fixed effects fit, and GLARMA fit; an ACF
plot of residuals; a plot of residuals against time; a normal Q-Q plot; the PIT histogram; and
the uniform Q-Q plot for the PIT. As an example, in Figure 1, we show just four of these
plots. Since the default title for the PIT histogram is too long for the available space we use
the titles argument to abbreviate it.

par(mar = c(4,4,3,.1), cex.lab = 0.95, cex.axis = 0.9,

mgp = c(2,.7,0), tcl = -0.3, las = 1)

plot(glarmamod, which = c(1,2,3,5),

titles = list(NULL, NULL, NULL, "PIT for GLARMA (Neg. Binomial)"))

The ACF plot indicates that the model has dealt adequately with any serial correlation
present, and the PIT histogram suggests that the negative binomial provides a suitable model
for the counts.
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5.2. Court Conviction Data

This data set records monthly counts of charges laid and convictions made in Local Courts
and Higher Court in armed robbery in New South Wales, Australia, from 1995–2007, see
Dunsmuir, Tran, Weatherburn, and Wales (2008). A description of the columns in the data
set is given in Table 5.2.

Column Variable Description

1 Date Date in month/year format
2 Incpt Vector of 1s
3 Trend Scaled time trend
4 Step.2001 Step change from 2001 onwards
5 Trend.2001 Change in trend from 2001 onwards
6 HC.N Monthly number of cases, Higher Court
7 HC.Y Monthly number of convictions, Higher Court
8 HC.P Monthly proportion of convictions, Higher Court
9 LC.N Monthly number of cases, Lower Court
10 LC.Y Monthly number of convictions, Lower Court
11 LC.P Monthly proportion of convictions, Lower Court

Table 2: The court conviction data set

The first step is to set up dummy variables for months.

> data(RobberyConvict)

> datalen <- dim(RobberyConvict)[1]

> monthmat <- matrix(0, nrow = datalen, ncol = 12)

> dimnames(monthmat) <- list(NULL, c("Jan", "Feb", "Mar", "Apr", "May", "Jun",

+ "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))

> months <- unique(months(strptime(RobberyConvict$Date, format = "%m/%d/%Y"),

+ abbreviate=TRUE))

> for (j in 1:12) {

+ monthmat[months(strptime(RobberyConvict$Date, "%m/%d/%Y"),

+ abbreviate = TRUE) == months[j], j] <-1

+ }

>

> RobberyConvict <- cbind(rep(1, datalen), RobberyConvict, monthmat)

> rm(monthmat)

Similar analyses can be carried out for both the Lower Court and the Higher Court data.
Here we consider only the Lower Court data. The ARIMA component of the model is chosen
to be AR(1) and the model for the conviction counts is binomial. A GLM is fitted first to
obtain an initial value for the regression coefficients. The initial value of the AR parameter
is set at 0. Pearson residuals are used with Newton-Raphson iteration.

> ### Prepare the data for fitting a binomial

> y1 <- RobberyConvict$LC.Y

> n1 <- RobberyConvict$LC.N
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> Y <- cbind(y1, n1-y1)

> head(Y, 5)

y1

[1,] 3 9

[2,] 3 8

[3,] 6 9

[4,] 6 9

[5,] 6 5

> ### Fit the GLM

> glm.LCRobbery <- glm(Y ~ Step.2001 +

+ I(Feb + Mar + Apr + May + Jun + Jul) +

+ I(Aug + Sep + Oct + Nov + Dec),

+ data = RobberyConvict, family = binomial(link = logit),

+ na.action = na.omit, x = TRUE)

> summary(glm.LCRobbery, corr = FALSE)

Call:

glm(formula = Y ~ Step.2001 + I(Feb + Mar + Apr + May + Jun +

Jul) + I(Aug + Sep + Oct + Nov + Dec), family = binomial(link = logit),

data = RobberyConvict, na.action = na.omit, x = TRUE)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.5435 -0.8978 0.1682 0.8011 2.6497

Coefficients:

Estimate Std. Error

(Intercept) -0.25685 0.15605

Step.2001 0.82315 0.08135

I(Feb + Mar + Apr + May + Jun + Jul) -0.37228 0.16188

I(Aug + Sep + Oct + Nov + Dec) -0.50068 0.16549

z value Pr(>|z|)

(Intercept) -1.646 0.09978 .

Step.2001 10.119 < 2e-16 ***

I(Feb + Mar + Apr + May + Jun + Jul) -2.300 0.02146 *

I(Aug + Sep + Oct + Nov + Dec) -3.025 0.00248 **

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 327.48 on 149 degrees of freedom
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Residual deviance: 212.12 on 146 degrees of freedom

AIC: 684.79

Number of Fisher Scoring iterations: 4

> X <- glm.LCRobbery$x

> colnames(X)[3:4] <- c("Feb-Jul","Aug-Dec")

> head(X, 5)

(Intercept) Step.2001 Feb-Jul Aug-Dec

1 1 0 0 0

2 1 0 1 0

3 1 0 1 0

4 1 0 1 0

5 1 0 1 0

> glarmamod <- glarma(Y, X, phiLags = c(1), type = "Bin", method = "NR",

+ residuals = "Pearson", maxit = 100, grad = 1e-6)

> summary(glarmamod)

Call: glarma(y = Y, X = X, type = "Bin", method = "NR", residuals = "Pearson",

phiLags = c(1), maxit = 100, grad = 1e-06)

Pearson Residuals:

Min 1Q Median 3Q Max

-2.4456 -0.8159 0.1337 0.7301 2.4798

GLARMA Coefficients:

Estimate Std.Error z-ratio Pr(>|z|)

phi_1 0.08175 0.03298 2.479 0.0132 *

Linear Model Coefficients:

Estimate Std.Error z-ratio Pr(>|z|)

(Intercept) -0.27468 0.15711 -1.748 0.08041 .

Step.2001 0.82203 0.09571 8.589 < 2e-16 ***

Feb-Jul -0.35677 0.15981 -2.232 0.02559 *

Aug-Dec -0.50039 0.16333 -3.064 0.00219 **

Null deviance: 327.48 on 149 degrees of freedom

Residual deviance: 198.91 on 145 degrees of freedom

AIC: 680.676

Number of Newton Raphson iterations: 4

LRT and Wald Test:
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Alternative hypothesis: model is a GLARMA process

Null hypothesis: model is a GLM with the same regression structure

Statistic p-value

LR Test 6.110 0.0134 *

Wald Test 6.144 0.0132 *

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We observe that the regression coefficients for the GLARMA model are quite similar to those
for the GLM model. In particular, the step change in 2001 is highly significant. The likelihood
ratio and Wald tests both suggest the need to deal with autocorrelation.

par(mar = c(4,4,3,.1), cex.lab = 0.95, cex.axis = 0.9,

mgp = c(2,.7,0), tcl = -0.3, las = 1)

plot(glarmamod)

In the diagnostic plots shown in Figure 2, the ACF plot shows little residual autocorrelation,
and the Q-Q plot of the residuals shows reasonable conformity with normality. However the
PIT histogram suggests that the binomial model for the counts is not appropriate for this
data.
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Figure 2: Diagnostic plots for the court conviction model
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