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Abstract

The R-package mada is a tool for the meta-analysis of diagnostic accuracy. In con-
trast to univariate meta-analysis, diagnostic meta-analysis requires bivariate models. An
additional challenge is to provide a summary receiver operating characteristic curves that
seek to integrate receiver operator characteristic curves of primary studies. The package
implements the approach of Reitsma, Glas, Rutjes, Scholten, Bossuyt, and Zwinderman
(2005), which in the absence of covariates is equivalent to the HSROC model of Rutter
and Gatsonis (2001). More recent models by Doebler, Holling, and Böhning (2012) and
Holling, Böhning, and Böhning (2012b) are also available, including meta-regression for
the first approach. In addition a range of functions for descriptive statistics and graphics
are provided.

Keywords: diagnostic meta-analysis, multivariate statistics, summary receiver operating char-
acteristic, R.

1. Introduction

While substantial work has been conducted on methods for diagnostic meta-analysis, it has
not become a routine procedure yet. One of the reasons for this is certainly the complexity
of bivariate approaches, but another reason is that standard software packages for meta-
analysis, for example Comprehensive Meta-Analysis and RevMan (Biostat, Inc. 2006; The
Nordic Cochrane Centre 2011), do not include software to fit models appropriate for diagnostic
meta-analysis. For the recommended (Leeflang, Deeks, Gatsonis, and Bossuyt 2008) bivariate
approach of Rutter and Gatsonis (2001) meta-analysts can use Bayesian approaches (for
example in WinBUGS (Lunn, Thomas, Best, and Spiegelhalter 2000) or OpenBUGS (Lunn,
Spiegelhalter, Thomas, and Best 2009)), the stata module metandi (Harbord and Whiting
2010), or the SAS macro METADAS (Takwoingi and Deeks 2011). So currently available
software is either relatively complex (WinBUGS/OpenBUGS) or proprietary (stata, SAS).

The open source package mada written in R (R Core Team 2012) provides some established
and some current approaches to diagnostic meta-analysis, as well as functions to produce
descriptive statistics and graphics. It is hopefully complete enough to be the only tool needed
for a diagnostic meta-analysis. mada has been developed with an R user in mind that has used
standard model fitting functions before, and a lot of the output of mada will look familiar to
such a user. While this paper cannot provide an introduction to R, it is hopefully detailed
enough to provide a novice R user with enough hints to perform diagnostic meta-analysis
along the lines of it. Free introductions to R are for example available on the homepage of
the R project. We assume that the reader is familiar with central concepts of meta-analysis,

http://www.r-project.org/
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like fixed and random effects models (for example Borenstein, Hedges, Higgins, and Rothstein
2009) and ideas behind diagnostic accuracy meta-analysis and (S)ROC curves (starting points
could be Sutton, Abrams, Jones, Sheldon, and Song 2000; Walter 2002; Jones and Athanasiou
2005; Leeflang et al. 2008).

2. Obtaining the package

Once R is installed and an internet connection is available, the package can be installed from
CRAN on most systems by typing

R> install.packages("mada")

Development of mada is hosted at http://r-forge.r-project.org/projects/mada/; the
most current version is available there1, while only stable versions are available from CRAN.
The package can then be loaded:

R> library("mada")

3. Entering data

Primary diagnostic studies observe the result of a gold standard procedure which defines the
presence or absence of a condition, and the result of a diagnostic test (typically some kind of
low cost procedure, or at least one that is less invasive than the gold standard). Data from
such a primary study could be reported in a 2 × 2 table, see Table 1.

Table 1: Data from the ith study in a 2 × 2 table.

with condition without condition

Test positive yi zi

Test negative mi − yi ni − zi

Total mi ni

The numbers yi and zi are the numbers of true-positives (TP) and false positives (FP),
respectively, and mi−yi and ni−zi are the numbers of false negatives (FN) and true negatives
(TN). Often derived measures of diagnostic accuracy are calculated from 2×2 tables. Using
the notation in Table 1, one can calculate

pi = sensitivity of ith study =
yi

mi

(1)

ui = false positive rate of ith study =
zi

ni

(2)

1 − ui = specificity of ith study =
ni − zi

ni

. (3)

1For example by typing install.packages("mada", repos="http://R-Forge.R-project.org") at an R

prompt.
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Basically all functions in the mada package need data from 2×2 tables. One can use R to
calculate the table given specificities or sensitivities if the sample size in each group is known
(sometimes there is insufficient data to reconstruct the 2×2 table). The above formulae for
the sensitivity for example implies that

yi = mipi.

If a primary study reports a sensitivity of .944 and that there were 142 people with the
condition, we can calculate y by

R> y <- 142 * .944

R> y

[1] 134.048

Since this is not an integer, we need to round it to the nearest integer

R> round(y)

[1] 134

Note that mada is a bit paranoid about the input: it demands that the data and the rounded
data are identical to prevent some obvious error. Hence the use of the round function should
not be omitted.

Let us now assume that the number of TP, FP, FN and TN is known for each primary study.
A good way to organise information in R is to use data frames, which can hold different
variables. In our case each row of the data frame corresponds to one primary study. As an
example we enter the data from six studies from a meta-analysis of the AUDIT-C (a short
screening test for alcohol problems, Kriston, Hölzel, Weiser, Berner, and Härter 2008) into a
data frame

R> AuditC6 <- data.frame(TP = c(47, 126, 19, 36, 130, 84),

+ FN = c(9, 51, 10, 3, 19, 2),

+ FP = c(101, 272, 12, 78, 211, 68),

+ TN = c(738, 1543, 192, 276, 959, 89))

R> AuditC6

TP FN FP TN

1 47 9 101 738

2 126 51 272 1543

3 19 10 12 192

4 36 3 78 276

5 130 19 211 959

6 84 2 68 89

Note that many central functions in mada also accept four vectors of frequencies (TP, FN,
FP, TN) as input. Nevertheless, it is convenient to store not only the observed frequencies,
but also the study names in the same data frame. The following command shows how to do
this for our shortened example:
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R> AuditC6$names <- c("Study 1", "Study 2", "Study 4",

+ "Study 4", "Study 5", "Study 6")

The full data set with 14 studies is part of mada; let’s load the data set and have a look at
the last six studies:

R> data("AuditC")

R> tail(AuditC)

TP FN FP TN

9 59 5 55 136

10 142 50 571 2788

11 137 24 107 358

12 57 3 103 437

13 34 1 21 56

14 152 51 88 264

In the following we will use the AuditC data set as a running example.

3.1. Zero cells

In the analysis of data in 2×2 tables zero cells often lead to problems or statistical artefacts
since certain ratios do not exist. So called continuity corrections are added to the observed
frequencies; these are small positive numbers. One suggestions in the literature is to use 0.5 as
the continuity correction, which is the default value in mada. All relevant functions in mada

allow user specified continuity corrections and the correction can be applied to all studies, or
just to those with zero cells.

4. Descriptive statistics

Descriptive statistics for a data set include the sensitivity, specificity and false-positive rate
of the primary studies and also their positive and negative likelihood ratios (LR+, LR

−
), and

their diagnostic odds ratio (DOR; Glas, Lijmer, Prins, Bonsel, and Bossuyt 2003). These are
defined as

LR+ =
p

u
=

sensitivity

false positive rate
,

LR
−

=
1 − p

1 − u
,

and

DOR =
LR+

LR
−

=
TP · TN

FN · FP
.

All these are easily computed using the madad function, together with their confidence inter-
vals. We use the formulae provided by Deeks (2001). madad also performs χ2 tests to assess
heterogeneity of sensitivities and specificities, the null hypothesis being in both cases, that all
are equal. Finally the correlation of sensitivities and false positive rates is calculated to give
a hint whether the cut-off value problem is present. The following output is slightly cropped.
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R> madad(AuditC)

Descriptive summary of AuditC with 14 primary studies.

Confidence level for all calculations set to 95 %

Using a continuity correction of 0.5 if applicable

Diagnostic accuracies

sens 2.5% 97.5% spec 2.5% 97.5%

[1,] 0.833 0.716 0.908 0.879 0.855 0.899

[2,] 0.711 0.640 0.772 0.850 0.833 0.866

...

[14,] 0.748 0.684 0.802 0.749 0.702 0.792

Test for equality of sensitivities:

X-squared = 272.3603, df = 13, p-value = <2e-16

Test for equality of specificities:

X-squared = 2204.8, df = 13, p-value = <2e-16

Diagnostic OR and likelihood ratios

DOR 2.5% 97.5% posLR 2.5% 97.5% negLR 2.5% 97.5%

[1,] 36.379 17.587 75.251 6.897 5.556 8.561 0.190 0.106 0.339

...

[14,] 8.850 5.949 13.165 2.982 2.448 3.632 0.337 0.264 0.430

Correlation of sensitivities and false positive rates:

rho 2.5 % 97.5 %

0.677 0.228 0.888

The madad function has a range of options with respect to computational details; for example
one can compute 80% confidence intervals:

R> madad(AuditC, level = 0.80)

Also note that all the output of madad is available for further computations if one assigns
the output of madad to an object. For example the false positive rates with their confidence
intervals can be extracted using the $ construct (output cropped):

R> AuditC.d <- madad(AuditC)

R> AuditC.d$fpr

$fpr

[1] 0.12083333 0.15005507 0.06097561 0.22112676 0.18061486 0.43354430

[7] 0.20988806 0.52006770 0.28906250 0.17008929 0.23068670 0.19131238

[13] 0.27564103 0.25070822

$fpr.ci

2.5% 97.5%
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Forest plot

Sensitivity
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0.83 [0.72, 0.91]

0.71 [0.64, 0.77]

0.65 [0.47, 0.79]

0.91 [0.79, 0.97]

0.87 [0.81, 0.91]

0.97 [0.91, 0.99]

0.99 [0.93, 1.00]

1.00 [0.99, 1.00]

0.92 [0.82, 0.96]

0.74 [0.67, 0.80]

0.85 [0.79, 0.90]

0.94 [0.85, 0.98]

0.96 [0.84, 0.99]

0.75 [0.68, 0.80]

0.47 0.74 1.00

Forest plot

Specificity
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Study 7
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Study 9

Study 10
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Study 14

0.88 [0.86, 0.90]

0.85 [0.83, 0.87]
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0.78 [0.73, 0.82]

0.82 [0.80, 0.84]

0.57 [0.49, 0.64]

0.79 [0.75, 0.82]

0.48 [0.47, 0.49]

0.71 [0.64, 0.77]

0.83 [0.82, 0.84]

0.77 [0.73, 0.81]

0.81 [0.77, 0.84]

0.72 [0.62, 0.81]

0.75 [0.70, 0.79]

0.47 0.72 0.96

Figure 1: Paired forest plot for AUDIT-C data.

[1,] 0.10050071 0.1446182

...

[14,] 0.20834216 0.2984416

4.1. Descriptive graphics

For the AUDIT-C data, the χ2 tests already suggested heterogeneity of sensitivities and
specificities. The corresponding forest plots confirm this:

R> forest(madad(AuditC), type = "sens")

R> forest(madad(AuditC), type = "spec")

These plots are shown in Figure 1.

Apart from these univariate graphics mada provides a variety of plots to study the data on
ROC space. Note that for exploratory purposes it is often useful to employ color and other
features ofR’s plotting system. Two high level plots are provided by mada: crosshair to
produce crosshair plots (Phillips, Stewart, and Sutton 2010), and ROCellipse. The following
is an example of a call of crosshair that produces (arbitrarily) colored crosshairs and makes
the crosshairs wider with increased sample size; also only a portion of ROC space is plotted.

R> rs <- rowSums(AuditC)

R> weights <- 4 * rs / max(rs)

R> crosshair(AuditC, xlim = c(0,0.6), ylim = c(0.4,1),

+ col = 1:14, lwd = weights)

Figure 2 displays this plot and the next descriptive plot: ROCellipse plots confidence regions
which describe the uncertainty of the pair of sensitivity and false positive rate. These regions
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Figure 2: A “weighted” crosshair plot with (arbitrary) coloring and a plot with confidence
regions for primary study estimates.

are ellipses on logit ROC space, and by back-transforming them to regular ROC space the
(sometimes oddly shaped) regions are produced. By default this function will also plot the
point estimates. The following example is a bit contrived, but showcases the flexibility of
ROCellipse: here the plotting of the point estimates is suppressed manipulating the pch

argument, but then points are added in the next step.

R> ROCellipse(AuditC, pch = "")

R> points(fpr(AuditC), sens(AuditC))

5. Univariate approaches

Before the advent of the bivariate approaches by Rutter and Gatsonis (2001) and Reitsma
et al. (2005), some univariate approaches to the meta-analysis of diagnostic accuracy were
more popular. Bivariate approaches cannot be recommended if the sample size is too small.
The bivariate model of Reitsma et al. (2005) for example has 5 parameters, which would clearly
be too much for a handful of studies. Hence mada provides some univariate methods. Since
pooling sensitivities or specificities can be misleading (Gatsonis and Paliwal 2006), options
for the univariate meta-analysis of these are not provided. mada does provide approaches for
the DOR (Glas et al. 2003), the positive and negative likelihood ratios, and θ, the accuracy
parameter of the proportional hazards model for diagnostic meta-analysis (Holling et al.

2012b). In this vignette we explain the details on the DOR methodology and the methods
for θ.
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5.1. Diagnostic odds ratio

In analogy to the meta-analysis of the odds ratio (OR) methods for the meta-analysis of the
DOR can be developed (Glas et al. 2003). For the fixed effects case a Mantel-Haenszel (MH;
see for example Deeks 2001) is provided by mada. The underlying fixed effects model has the
form

DORi = µ + ǫi,

where µ is true underlying DOR and the ǫi are independent errors with mean 0 and study
specific variance. The MH estimator is a weighted average of DORs observed in the primary
studies and is robust to the presence of zero cells. It takes the form

µ̂ =
∑

i

ωMH
i DORi
∑

i ωMH
i

,

where ωMH
i = zi(mi−yi)

mi+ni
are the Mantel-Haenszel weights.

One obtains an estimator for a random effects model following the approach of DerSimonian
and Laird (DSL; DerSimonian and Laird 1986). Here the underlying model is in terms of the
log DORs. One assumes

log DORi = µ + ǫi + δi,

where µ is the mean of the log DORs, ǫi and δi are independent with mean 0; the variance
σ2

i of ǫi is estimated as

σ̂2
i =

1

yi

+
1

mi − yi

+
1

zi

+
1

ni − zi

,

and the variance τ2 of δi is to be estimated. The DSL estimator then is a weighted estimator,
too:

µ̂ =
∑

i

ωDSL
i DORi
∑

i ωDSL
i

,

where

ωDSL
i =

1

σ̂2
i + τ2

.

The variance τ2 is estimated by the Cochran Q statistic trick.

The function madauni handles the meta-analysis of the DOR (and the negative and positive
likelihood ratios). One can use madauni in the following fashion:

R> (fit.DOR.DSL <- madauni(AuditC))

Call:

madauni(x = AuditC)

DOR tau^2

26.337 0.311

R> (fit.DOR.MH <- madauni(AuditC, method = "MH"))
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Call:

madauni(x = AuditC, method = "MH")

DOR

17.93335

Note that the brackets around fit.DOR.DSL <- madauni(AuditC) are a compact way to
print the fit. The print method for madauni objects is not very informative, only the point
estimate is returned along with (in the random effects case) an estimate of the τ2, the variance
of the random effects. Note that estimation in the random effects case is performed on log-
DOR scale, so that τ2 of the above DSL fit is substantial. To obtain more information the
summary method can be used:

R> summary(fit.DOR.DSL)

Call:

madauni(x = AuditC)

Estimates:

DSL estimate 2.5 % 97.5 %

DOR 26.337 17.971 38.596

lnDOR 3.271 2.889 3.653

tau^2 0.311 0.000 3.787

tau 0.557 0.000 1.946

Cochran's Q: 19.683 (13 df, p = 0.103)

Higgins' I^2: 33.955%

In addition to the confidence intervals, Cochran’s Q statistic (Cochran 1954) can be seen and
Higgins I2 (Higgins, Thompson, Deeks, and Altman 2003). Producing a forest plot of the
(log-)DOR values together with the summary estimate is straightforward using the forest

method for the madauni class:

R> forest(fit.DOR.DSL)

The resulting plot is shown in Figure 3.

5.2. Proportional hazards model approach

The proportional hazards model approach (PHM; see Holling et al. 2012b) builds on the
assumption of a simple form of the ROC curves. The so called Lehmann model (Le 2006) is
assumed. Let pi and ui denote the ith study’s sensitivity and false positive rate respectively.
The relationship of pi and ui is then assumed to be

pi = uθi

i ,

where θi > 0 is a diagnostic accuracy parameter. The smaller θ, the larger the area under
the ROC curve and thus the more accurate the diagnostic test. For the meta-analysis of θ
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Forest plot

log diagnostic odds ratio

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Study 9

Study 10

Study 11

Study 12

Study 13

Study 14

Summary (DSL)

 3.59 [ 2.87,  4.32]

 2.63 [ 2.28,  2.98]

 3.35 [ 2.41,  4.30]

 3.60 [ 2.48,  4.73]

 3.41 [ 2.91,  3.91]

 3.79 [ 2.49,  5.08]

 6.25 [ 3.46,  9.04]

 7.24 [ 4.46, 10.01]

 3.28 [ 2.35,  4.21]

 2.62 [ 2.29,  2.96]

 2.93 [ 2.45,  3.41]

 4.24 [ 3.14,  5.34]

 4.10 [ 2.39,  5.81]

 2.18 [ 1.78,  2.58]

 3.27 [ 2.89,  3.65]

1.78 5.90 10.01

Figure 3: Forest plot for a univariate random effects meta-analysis of the AUDIT-C data
using the diagnostic odds ratio.

the APMLE estimator is implemented in mada for the case of homogeneity (i.e., fixed effects)
and heterogeneity (i.e., random effects). Again the standard output of the phm function is
rather sparse:

R> (fit.phm.homo <- phm(AuditC, hetero = FALSE))

Call:

phm.default(data = AuditC, hetero = FALSE)

Coefficients:

theta

0.004586893

R> (fit.phm.het <- phm(AuditC))

Call:

phm.default(data = AuditC)

Coefficients:

theta taus_sq

0.084631351 0.003706143

The summary method is more informative:

R> summary(fit.phm.homo)
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Call:

phm.default(data = AuditC, hetero = FALSE)

Estimate 2.5 % 97.5 %

theta 0.004586893 0.003508507 0.00566528

Log-likelihood: -61.499 on 1 degrees of freedom

AIC: 125

BIC: 125.6

Chi-square goodness of fit test (Adjusted Profile Maximum

Likelihood under homogeneity)

data: x

Chi-square = 222.47, df = 1, p-value < 2.2e-16

AUC 2.5 % 97.5 % pAUC 2.5 % 97.5 %

0.995 0.997 0.994 0.994 0.995 0.992

The χ2 test goodness of fit test rejects the assumption of homogeneity, but the fit of the
model for heterogeneity is better:

R> summary(fit.phm.het)

Call:

phm.default(data = AuditC)

Estimate 2.5 % 97.5 %

theta 0.084631351 0.047449859 0.121812844

taus_sq 0.003706143 -0.001277798 0.008690085

Log-likelihood: 31.121 on 2 degrees of freedom

AIC: -58.2

BIC: -57

Chi-square goodness of fit test (Adjusted Profile Maximum

Likelihood under heterogeneity)

data: x

Chi-square = 13.726, df = 2, p-value = 0.3185

AUC 2.5 % 97.5 % pAUC 2.5 % 97.5 %

0.922 0.955 0.891 0.891 0.937 0.848

The estimation of θ results in an SROC curve; plotting this curve together with confidence
bands obtained from the confidence interval of θ in the summary is done with the plot
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Figure 4: Summary plot for the analysis of the AUDIT-C data with the PHM model.

method. We also add the original data on ROC space with confidence regions and only plot
a portion of ROC space.

R> plot(fit.phm.het, xlim = c(0,0.6), ylim = c(0.4,1))

R> ROCellipse(AuditC, add = TRUE)

The resulting plot is shown in Figure 4.

Note that the SROC curve is not extrapolated beyond the range of the original data. The
area under the SROC curve, the AUC, is also part of the summary above. For the PHM it is
calculated by

AUC =
1

θ + 1
,

and by the same relation a confidence interval for the AUC can be computed from the confi-
dence interval for θ. The mada package also offers the AUC function to calculate the AUC of
other SROC curves which uses the trapezoidal rule.

6. A bivariate approach

Typically the sensitivity and specificity of a diagnostic test depend on each other through
a cut-off value: as the cut-off is varied to, say, increase the sensitivity, the specificity often
decreases. So in a meta-analytic setting one will often observe (negatively) correlated sen-
sitivities and specificities. This observation can (equivalently) also be stated as a (positive)
correlation of sensitivities and false positive rates. Since these two quantities are interrelated,
bivariate approaches to the meta-analysis of diagnostic accuracy have been quite success-
ful (Rutter and Gatsonis 2001; Van Houwelingen, Arends, and Stijnen 2002; Reitsma et al.
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2005; Harbord, Deeks, Egger, Whiting, and Sterne 2007; Arends, Hamza, Van Houwelingen,
Heijenbrok-Kal, Hunink, and Stijnen 2008).

One typically assumes a binomial model conditional on a primary studies true sensitivity and
false positive rates, and a bivariate normal model for the logit-transformed pairs of sensitivities
and false positive rates. There are two ways to cast the final model: as a non-linear mixed
model or as linear mixed model (see for example Arends et al. 2008). The latter approach is
implemented in mada’s reitsma function, so we give some more details. We note that more
generally the following can be seen as a multivariate meta-regression and so the the package
mvmeta (Gasparrini, Armstrong, and Kenward 2012) serves as a basis for our implementation.

Let pi and ui denote the ith study’s true sensitivity and false positive rate respectively, and
let p̂i and ûi denote their estimates from the observed frequencies. Then, since a binomial
model is assumed conditional on the true pi, the variance of logit(p̂i) can be approximated2

by
1

mip̂i(1 − p̂i)
,

and the variance of logit(ûi) is then

1

niûi(1 − ûi)
.

So on the within study level one assumes, conditional on pi and ui, that the observed variation
is described by these variances and a normal model; let Di denote a diagonal 2×2 matrix with
the two variances on the diagonal. On the study level, one assumes that a global mean

µ = (µ1, µ2)T

and covariance matrix

Σ =

(

σ2
1 σ

σ σ2
2

)

describe the heterogeneity of the pairs (logit(pi), logit(ui)). So the model for the ith study is
then

(logit(p̂i), logit(ûi))
T

∼ N(µ, Σ + Di).

Fitting this model in mada is similar to the other model fitting functions:

R> (fit.reitsma <- reitsma(AuditC))

Call: reitsma.default(data = AuditC)

Fixed-effects coefficients:

tsens tfpr

(Intercept) 2.0997 -1.2637

14 studies, 2 fixed and 3 random-effects parameters

logLik AIC BIC

31.5640 -53.1279 -46.4669

2This uses the delta method.
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The print method for reitsma objects has a scarce output. More information is offered by
the summary method:

R> summary(fit.reitsma)

Call: reitsma.default(data = AuditC)

Bivariate diagnostic random-effects meta-analysis

Estimation method: REML

Fixed-effects coefficients

Estimate Std. Error z Pr(>|z|) 95%ci.lb

tsens.(Intercept) 2.100 0.338 6.215 0.000 1.438

tfpr.(Intercept) -1.264 0.174 -7.249 0.000 -1.605

sensitivity 0.891 - - - 0.808

false pos. rate 0.220 - - - 0.167

95%ci.ub

tsens.(Intercept) 2.762 ***

tfpr.(Intercept) -0.922 ***

sensitivity 0.941

false pos. rate 0.285

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Variance components: between-studies Std. Dev and correlation matrix

Std. Dev tsens tfpr

tsens 1.175 1.000 .

tfpr 0.638 0.854 1.000

logLik AIC BIC

31.564 -53.128 -46.467

AUC: 0.887

Partial AUC (restricted to observed FPRs and normalized): 0.861

I2 estimates

Zhou and Dendukuri approach: 40.4 %

Holling sample size unadjusted approaches: 35.6 - 79.3 %

Holling sample size adjusted approaches: 0.2 - 2.4 %

Note the sensitivity and false positive rate returned in this summary are just the back-
transformed µ1 and µ2. In addition, please note that the methodology for estimating the I2 in
the context of diagnostic test accuracy meta-analyses is not yet fully established. The obtained
estimates are based on the approach described by Zhou and Dendukuri (2014) for bivariate
meta-analysis and based on the approaches described by Holling, Bohning, Masoudi, Bohning,
and Sangnawakij (2019). For the latter, we compute both sample size-unadjusted and adjusted
estimated according to all provided formulae for computing within-study variability. One can



Philipp Doebler, Heinz Holling 15

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SROC curve (bivariate model) for AUDIT−C data

False Positive Rate

S
e
n
s
it
iv

it
y

data

summary estimate

SROC

conf. region

Figure 5: SROC curve for the Reitsma et al. (2005) model.

then proceed to plot the SROC curve of this model. By default the point estimate of the
pair of sensitivity and false positive rate is also plotted together with a confidence region. In
the following example the SROC curve is plotted a bit thicker using the sroclwd argument,
a caption is added to the plot and also the data and a legend. By default the SROC curve is
not extrapolated beyond the range of the original data:

R> plot(fit.reitsma, sroclwd = 2,

+ main = "SROC curve (bivariate model) for AUDIT-C data")

R> points(fpr(AuditC), sens(AuditC), pch = 2)

R> legend("bottomright", c("data", "summary estimate"), pch = c(2,1))

R> legend("bottomleft", c("SROC", "conf. region"), lwd = c(2,1))

The output is shown in Figure 5.

6.1. Comparing SROC curves

We show how to compare SROC curves. Patrick, Cheadle, Thompson, Diehr, Koepsell, and
Kinne (1994) conducted a meta-analysis to (among other things) investigate the efficacy of
self administered and interviewer administered questionnaires to detect nicotine use. The
data sets SAQ and IAQ are the respective subsets of this data. First one fits bivariate models
to the data sets:

R> data("IAQ")

R> data("SAQ")

R> # both datasets contain more than one 2x2-table per study

R> # reduce (somewhat arbitrarily) to one row per study by

R> # using the first coded table only:
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Figure 6: Comparison of interviewer and self-adminstered smoking questionaires with SROC
curves.

R> IAQ1 <- subset(IAQ, IAQ$result_id == 1)

R> SAQ1 <- subset(SAQ, SAQ$result_id == 1)

R> fit.IAQ <- reitsma(IAQ1)

R> fit.SAQ <- reitsma(SAQ1)

Then one plots the SROC curves of these fits, beginning with the fit of the IAQ and adding
the SAQ curve. Note that the lty arguments is used so that the curves can be distinguished.

R> plot(fit.IAQ, xlim = c(0,.5), ylim = c(.5,1),

+ main = "Comparison of IAQ and SAQ")

R> lines(sroc(fit.SAQ), lty = 2)

R> ROCellipse(fit.SAQ, lty = 2, pch = 2, add = TRUE)

R> points(fpr(IAQ1), sens(IAQ1), cex = .5)

R> points(fpr(SAQ1), sens(SAQ1), pch = 2, cex = 0.5)

R> legend("bottomright", c("IAQ", "SAQ"), pch = 1:2, lty = 1:2)

Figure 6 contains the resulting plot. The summary estimates are well separated, though the
confidence regions slightly overlap. It would nevertheless be safe to conclude that IAQ is a
more reliable way to measure smoking than SAQ.

6.2. Bivariate meta-regression

We demonstrate diagnostic meta-regression also using the data of Patrick et al. (1994). We
use the complete data set, which is loaded by

R> data("smoking")
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R> # again reduce to one result per study:

R> smoking1 <- subset(smoking, smoking$result_id == 1)

The data.frame contains the same variables as the SAQ and IAQ subsets, but the type is
coded by the variable type:

R> summary(smoking1$type)

IAQ SAQ

10 16

We use the factor type as a covariate in diagnostic meta-regression:

R> fit.smoking.type <- reitsma(smoking1,

+ formula = cbind(tsens, tfpr) ~ type)

Note that the left hand side of the formula object always has to be of the form cbind(tsens,

tfpr), where tsens and tfpr are for transformed sensitivity and false positive rate respec-
tively. We generate detailed output by:

R> summary(fit.smoking.type)

Call: reitsma.default(data = smoking1, formula = cbind(tsens, tfpr) ~

type)

Bivariate diagnostic random-effects meta-analysis

Estimation method: REML

Fixed-effects coefficients

Estimate Std. Error z Pr(>|z|) 95%ci.lb

tsens.(Intercept) 2.813 0.491 5.735 0.000 1.852

tsens.typeSAQ -1.166 0.634 -1.838 0.066 -2.409

tfpr.(Intercept) -3.337 0.311 -10.733 0.000 -3.946

tfpr.typeSAQ 0.882 0.389 2.269 0.023 0.120

95%ci.ub

tsens.(Intercept) 3.775 ***

tsens.typeSAQ 0.077 .

tfpr.(Intercept) -2.727 ***

tfpr.typeSAQ 1.645 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Variance components: between-studies Std. Dev and correlation matrix

Std. Dev tsens tfpr

tsens 1.508 1.000 .

tfpr 0.875 0.551 1.000
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logLik AIC BIC

70.721 -127.441 -113.783

I2 estimates

Zhou and Dendukuri approach: 66 %

Holling sample size unadjusted approaches: 83.7 - 96.8 %

Holling sample size adjusted approaches: 5.3 - 12.7 %

This output can be interpreted as follows: The z value for the regression coefficient for the
false-positive rates is significant, indicating that the interviewer administered questionnaires
offer a better false-positive rate (the coefficient for the difference in false-positive rate for SAQ
is positive, so the false positive rates are higher for the SAQ and, hence, lower for the IAQ).
Interestingly the point estimate for the sensitivities does not indicate any effect.

Note that once meta-regression is used, one cannot reasonably plot SROC curves, since fixed
values for the covariates would have to be supplied to do so. Also (global) AUC values do
not make sense.

We can also compare the fit of two bivariate meta-regressions with a likelihood-ratio test. For
this, we have to refit the models with the maximum likelihood method, as the likelihood-ratio
test relies on asymptotic theory that is only valid if this estimation method is employed.

R> fit.smoking.ml.type <- reitsma(smoking1,

+ formula = cbind(tsens, tfpr) ~ type,

+ method = "ml")

R> fit.smoking.ml.intercept <- reitsma(smoking1,

+ formula = cbind(tsens, tfpr) ~ 1,

+ method = "ml")

R> anova(fit.smoking.ml.type, fit.smoking.ml.intercept)

Likelihood-ratio test

Model 1: cbind(tsens, tfpr) ~ type

Model 2: cbind(tsens, tfpr) ~ 1

ChiSquared Df Pr(>ChiSquared)

13.25 2 0.00133 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The meta-regression confirms that type explains some of the heterogeneity between the pri-
mary studies.

6.3. Transformations beyond the logit

All bivariate approaches explained so far use the conventional logit transformation. The
reitsma function offers the parametric tα family (Doebler et al. 2012) of transformations as
alternatives. The family is defined by

tα(x) := α log(x) − (2 − α) log(1 − x), x ∈ (0, 1), α ∈ [0, 2].
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For α = 1, the logit is obtained. In many cases the fit of a bivariate meta-regression can be
improved upon by choosing adequate values for α. The rational behind this is, that especially
sensitivities tend to cluster around values like .95 and the symmetric logit transformation
does not necessarily lead to normally distributed transformed proportions. As an example we
study the smoking data again using maximum-likelihood estimation:

R> fit.smoking1 <- reitsma(smoking1, method = "ml")

R> fit.smoking2 <- reitsma(smoking1,

+ alphasens = 0, alphafpr = 2,

+ method = "ml")

R> AIC(fit.smoking1)

[1] -120.0473

R> AIC(fit.smoking2)

[1] -120.1002

The almost identical AIC values indicates, that the fit of the models is comparable. For
purpose of inference, we likelihood-ratio tests are recommended, which are discussed for this
type of transformation by Doebler et al. (2012).

6.4. Estimating Likelihood Ratios and Diagnostic Odds Ratio

Based on the bivariate model for diagnostic test accuracy, it is possible to obtain pooled
likelihood ratios and diagnostic odds ratio. The SummaryPts function applies a sampling based
approach (as proposed by Zwinderman and Bossuyt (2008)) to estimate the aforementioned
properties. As an example, applying the SummaryPts function to the AuditC data, we would
get:

R> summary_pts_audit <- SummaryPts(reitsma(AuditC))

R> summary(summary_pts_audit)

Mean Median 2.5% 97.5%

posLR 4.060 4.03 3.2600 4.990

negLR 0.145 0.14 0.0813 0.234

invnegLR 7.430 7.13 4.2700 12.300

DOR 29.600 28.90 18.4000 45.300

6.5. Estimating Pooled Predictive Values

Predictive values are particularly useful in the clinical practice. The negative predictive
value indicates the probability of a patient with a negative test not having a certain dis-
ease/condition, while the positive predictive value indicates the probability of a patient with
a positive test having that certain disease/condition. The predictive values are dependent
not only on the sensitivity and specificity of the diagnostic test, but also on the prevalence of
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the disease/condition in the setting being studied. The predv_r and the predv_d functions
project probability distributions of predictive values based i. on pooled sensitivities and speci-
ficities (obtained using the bivariate approach) and ii. on prevalence ranges or distributions.
An application of this approach has been used by Sousa-Pinto, Tarrio, Blumenthal, Azevedo,
Delgado, and Fonseca (2021) As an example, we will use the AuditC data. Let us consider
that the prevalence of alcohol problems (the condition being assessed in the AuditC example)
ranges between 5% and 15%. We can use the predv_r function to obtain distributions for the
negative and positive predictive values of the screening test for each prevalence value within
that range:

R> pred_audit1 <- predv_r(AuditC, prop_min=0.05, prop_max=0.15)

R> summary(pred_audit1)

Estimates of predictive values

Minimum prevalence:[1] 0.05

Maximum prevalence:[1] 0.15

NPV

prevalence mean sd p2.5 p5 p10 p25 p50 p75 p90

1 0.05 0.992 0.002 0.988 0.989 0.990 0.991 0.993 0.994 0.995

2 0.06 0.991 0.002 0.985 0.986 0.988 0.989 0.991 0.993 0.994

3 0.07 0.989 0.003 0.983 0.984 0.985 0.988 0.990 0.991 0.993

4 0.08 0.988 0.003 0.980 0.982 0.983 0.986 0.988 0.990 0.992

5 0.09 0.986 0.004 0.977 0.979 0.981 0.984 0.986 0.989 0.990

6 0.10 0.984 0.004 0.975 0.977 0.979 0.982 0.985 0.987 0.989

7 0.11 0.982 0.005 0.972 0.974 0.976 0.980 0.983 0.986 0.988

8 0.12 0.981 0.005 0.969 0.971 0.974 0.978 0.981 0.984 0.987

9 0.13 0.979 0.006 0.966 0.969 0.972 0.976 0.979 0.983 0.986

10 0.14 0.977 0.006 0.963 0.966 0.969 0.973 0.978 0.981 0.984

11 0.15 0.975 0.007 0.960 0.963 0.966 0.971 0.976 0.980 0.983

p95 p97.5

1 0.995 0.996

2 0.994 0.995

3 0.993 0.994

4 0.992 0.993

5 0.991 0.992

6 0.990 0.991

7 0.989 0.990

8 0.988 0.989

9 0.987 0.988

10 0.986 0.987

11 0.985 0.986

PPV

prevalence mean sd p2.5 p5 p10 p25 p50 p75 p90

1 0.05 0.176 0.016 0.147 0.151 0.156 0.165 0.175 0.186 0.196
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2 0.06 0.205 0.018 0.172 0.177 0.183 0.193 0.205 0.217 0.229

3 0.07 0.233 0.019 0.197 0.203 0.209 0.220 0.233 0.246 0.259

4 0.08 0.260 0.021 0.221 0.227 0.234 0.246 0.259 0.274 0.287

5 0.09 0.286 0.022 0.244 0.250 0.257 0.270 0.285 0.300 0.314

6 0.10 0.310 0.023 0.266 0.273 0.280 0.294 0.309 0.325 0.340

7 0.11 0.333 0.024 0.287 0.294 0.302 0.316 0.333 0.349 0.364

8 0.12 0.355 0.025 0.308 0.315 0.323 0.338 0.355 0.372 0.387

9 0.13 0.376 0.025 0.328 0.335 0.344 0.359 0.376 0.393 0.409

10 0.14 0.396 0.026 0.347 0.354 0.363 0.379 0.396 0.414 0.430

11 0.15 0.416 0.026 0.365 0.373 0.382 0.398 0.416 0.434 0.450

p95 p97.5

1 0.203 0.208

2 0.236 0.242

3 0.266 0.273

4 0.295 0.303

5 0.323 0.330

6 0.349 0.357

7 0.373 0.382

8 0.397 0.405

9 0.419 0.427

10 0.440 0.448

11 0.460 0.469

We observe that the, for the defined prevalence range, the mean estimate for the negative
predictive value ranges between 98% and 99%, while the mean estimate for the positive
predictive value ranges between 18% and 42%.

Now let us consider that we do not want to project predictive values based on a prevalence
range, but rather based on a prevalence probability distribution. We know that the prevalence
of alcohol problems is given by a distribution, with a mean value of 10% and a standard-
deviation of 5. We can use the predv_d function to obtain probability distributions for the
negative and positive predictive values:

R> pred_audit2 <- predv_d(AuditC, prop_m=0.10, prop_sd=0.05)

R> summary(pred_audit2)

Mean SD p2.5 p5 p10 p25 p50 p75 p90 p95 p97.5

NPV 0.984 0.010 0.958 0.964 0.970 0.979 0.986 0.991 0.994 0.996 0.997

PPV 0.296 0.115 0.093 0.117 0.149 0.210 0.290 0.374 0.451 0.495 0.531

We obtain a distribution of negative predictive values defined by a mean of 98% and a
standard-deviation of 1% (95%CrI=96-100%), and a distribution of positive predictive values
defined by a mean of 30% and a standard-deviation of 12% (95%CrI=10-53%).

By default, the Zwindermann & Bossuyt approach is used to generate samples based of
sensitivities and false positive rates Zwinderman and Bossuyt (2008), based on which distri-
butions of predictive values are obtained. For faster results, such an approach may not be
used (zb=FALSE). Expected differences are small, especially if the number of participants of
primary studies is sufficiently high.
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If prevalence inputs (minimum and maximum, or mean and standard-deviation) are not
provided, the predv_r and the predv_d functions will estimate those inputs based on data
from primary studies. However, this may not be advisable, as studies focusing on diagnostic
test accuracy are typically not specifically designed for prevalence assessment (case-control
studies are particularly troublesome in this context).

7. Further development

In the future mada will support the mixture approach of Holling, Böhning, and Böhning
(2012a) and Bayesian approaches.
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