
roptim: An R Package for General Purpose

Optimization with C++

Yi Pan

University of Birmingham
Jianxin Pan

The University of Manchester

Abstract

In R environment, users can solve general-purpose optimization problems easily using
the optim function in package stats which is provided by default R installation. Although
the implementations of five core algorithms in optim(), namely "Nelder-Mead", "BFGS"

(Broyden-Fletcher-Goldfarb-Shanno), "CG" (conjugate gradients), "L-BFGS-B" (limited-
memory BFGS with box constraints) and "SANN" (simulated annealing), are converted
to native machine code, the user-provided objective function and gradient are usually
evaluated using the R interpreter which may result in performance penalty. This paper
describes a user-friendly C++ class Roptim from roptim package which provides a unified
wrapper interface to the C codes of the five optimization algorithms underlying optim

function and enables users performing general purpose optimization tasks using C++

without reimplementing the optimization routines. More advanced features for optimiza-
tion tasks, such as checking gradient/Hessian of the objective function and specifying fixed
parameters while allowing the rest to be adjusted to minimize the objective function, will
also be discussed in this paper.

Keywords: Nelder-Mead, BFGS, CG, L-BFGS-B, SANN, C++, R.

1. Introduction

Optimization algorithms are frequently used in mathematics, statistics, computer science
and operations research. Most statistical tools (e.g., R, Stata, SAS), as well as mathemati-
cal software such as Mathematica, Maple and MATLAB, provide optimization and nonlinear
modelling packages. The R environment (R Core Team 2017) has included build-in optimiza-
tion algorithms since its early days where stats::optim(), or optim() in package stats, is
one of most widely used functions for conducting basic optimization tasks. Here by basic
optimization, we mean minimization of functions that are mostly smooth without any con-
straints, or at most bounds-constrained. Within the same package, stats::nlm() (Schnabel,
Koonatz, and Weiss 1985) is used for solving nonlinear unconstrained minimization prob-
lems and stats::nlminb() offers unconstrained and constrained optimization using PORT
routines (Fox 1997). Outside the stats package, the package optimx (Nash, Varadhan et al.
2011) and its successor package optimr (Nash, Varadhan, Grothendieck, Nash, and Yes 2016)
offers a replacement and extension of the optim function to unify and streamline optimization
capabilities in R. Note this paper is not an exhaustive survey of all recent R developments for
optimization, and more complete discussion of functions and packages that perform optimiza-
tion tasks can be found in the task view on Optimization and Mathematical Programming

2 roptim: General Purpose Optimization with C++

(Theussl and Borchers 2014).

While the R language provides a stable statistical environment for fast prototyping and
easy data visualization, code implemented in R is interpreted at its core which may re-
sult in a much longer execution time when compared to the equivalent program in native
machine code. Although the five core implementations of algorithms in optim(), namely
"Nelder-Mead", "BFGS" (Broyden-Fletcher-Goldfarb-Shanno), "CG" (conjugate gradients),
"L-BFGS-B" (limited-memory BFGS with box constraints) and "SANN" (simulated anneal-
ing), are converted to high performance machine code, the user-provided objective function
and gradient implemented in R requires intensive evaluations during the optimization pro-
cess. With the increase of function complexity and data size, the execution time can be a
potential issue. To overcome this problem, most experienced R package developers, who use
C++ for the core computation, may have to use the C interface for the five aforementioned
methods directly (much harder to use when compared to optim), or even write their own
implementation of algorithms to do the optimization tasks.

In this paper, we focus on the basic function minimization problems using the five aforemen-
tioned algorithms, and present a user-friendly C++ class Roptim in R package roptim (freely
available from CRAN at http://CRAN.R-project.org/package=roptim) as a wrapper for
the C codes underlying optim to perform optimization tasks. The new approach makes it
straight-forward for R users, who are familiar with optim function, to convert their exist-
ing code or write new code of optimization tasks in C++ by using the Rcpp (Eddelbuettel,
François, Allaire, Chambers, Bates, and Ushey 2011) extension package in conjunction with
the RcppArmadillo C++ matrix library (Eddelbuettel and Sanderson 2014) for numerical
linear algebra. The main objective of this paper is to serve as the document of our package
(since package roptim is not a conventional package with pure R function interface and it
only provides wrapper classes defined in C++ header files) and introduce the Roptim class
to wide audiences of statisticians and practitioners who needs to perform optimization in R

using C++ for faster speed while still want to get consistent results with the optim function.

The rest of this paper is organized as follows. In Section 2 we briefly introduce the basic
optimization problems and five algorithms used in optim, then present both the internal C

interface provided by R and the newly proposed C++ interface provided by package roptim.
Section 3 provides three optimization problems as examples to illustrate the use of package
and discusses some advanced techniques used in performing the optimization tasks. Section
4 concludes the paper with some further discussions.

2. Design of package roptim

2.1. Overview of optimization task

In the simplest case, an optimization problem is about finding the minimization of general
nonlinear smooth functions of n parameters where the values of parameters may subject to
constraints. The task can be formulated as

x∗ = arg min
x

f(x) subject to L ≤ x ≤ U (1)

where x, L, U ∈ R
n and f : R

n 7→ R. Note that optimization problem with non-smooth
objective function is ongoing research which is beyond the scope of this paper. To solve the

Yi Pan, Jianxin Pan 3

Table 1: Optimization algorithms included in optim
Algorithm C interface Method type Box constraints

Nelder-Mead nmmin Derivative-free No
BFGS vmmin Quasi-Newton No

CG cgmin Gradient No
L-BFGS-B lbfgsb Quasi-Newton Yes

SANN samin Simulated-annealing No

problem in Equation (1), we focus on the five algorithms and their corresponding implemen-
tations which are internally used in optim function of stats package (Table 1).

The "Nelder-Mead" method (Nelder and Mead 1965) is from the second edition of Nash
(1990) which uses only function values (i.e., derivative-free) and is robust but relatively slow.
It works reasonably well for non-differentiable functions.

The "BFGS" (Fletcher 1970) and "L-BFGS-B" (Byrd, Lu, Nocedal, and Zhu 1995) are quasi-
Newton methods (also called variable metric algorithms) which require both function values
and gradients to perform the optimization task. In "BFGS", the inverse Hessian is approx-
imated by the Broyden-Fletcher-Goldfarb-Shanno formula at each iteration using updates
specified by gradient evaluations (or approximate gradient evaluation) and a "backtrack to
acceptable point" line search is used to the resulting newton step for a new trial solution;
while in "L-BFGS-B", the approximation of inverse Hessian is stored implicitly by keeping a
few vectors as needed and box optimization is allowed for bounds constraints on parameters.

The "CG" is a conjugate gradients method (Fletcher and Reeves 1964) which also requires
both function value and gradient for minimization task and three strategies are included from
Nash (1990). When compared to BFGS, conjugate gradient methods will generally be more
fragile, but as they do not store a matrix they may be successful in much larger optimization
problems. More detailed discussion for "BFGS", "L-BFGS-B" and "CG" can be found in Wright
and Nocedal (1999).

The "SANN" is by default a variant of simulated annealing (Bélisle 1992) which belongs to the
class of stochastic global optimization methods. This method uses only function values but is
relatively slow since it does not have a termination test and always evaluates the function for
the specified maximum number of iterations. It will also work for non-differentiable functions.
This implementation uses the Metropolis function for the acceptance probability. By default
the next candidate point is generated from a Gaussian Markov kernel with scale proportional
to the actual temperature.

2.2. The C interface

To avoid the performance penalty when the optimization tasks (i.e., both objective function
and the corresponding gradient) are implemented in R using optim, one possible solution is
to make use of the following C interface of five algorithms directly (Team 1999):

• Nelder-Mead:

void nmmin(int n, double *xin, double *x, double *Fmin, optimfn fn,

int *fail, double abstol, double intol, void *ex,

4 roptim: General Purpose Optimization with C++

double alpha, double beta, double gamma, int trace,

int *fncount, int maxit);

• BFGS:

void vmmin(int n, double *x, double *Fmin,

optimfn fn, optimgr gr, int maxit, int trace,

int *mask, double abstol, double reltol, int nREPORT,

void *ex, int *fncount, int *grcount, int *fail);

• Conjugate gradients:

void cgmin(int n, double *xin, double *x, double *Fmin,

optimfn fn, optimgr gr, int *fail, double abstol,

double intol, void *ex, int type, int trace,

int *fncount, int *grcount, int maxit);

• Limited-memory BFGS with bounds:

void lbfgsb(int n, int lmm, double *x, double *lower,

double *upper, int *nbd, double *Fmin, optimfn fn,

optimgr gr, int *fail, void *ex, double factr,

double pgtol, int *fncount, int *grcount,

int maxit, char *msg, int trace, int nREPORT);

• Simulated annealing:

void samin(int n, double *x, double *Fmin, optimfn fn, int maxit,

int tmax, double temp, int trace, void *ex);

where users need to supply an objective function and the corresponding gradient separately
in C with the types of

typedef double optimfn(int n, double *par, void *ex);

typedef void optimgr(int n, double *par, double *gr, void *ex);

respectively when needed. Many of the arguments are common to the various aforementioned
methods — n is the number of parameters, x or xin is the starting parameters on entry
while x is also the final parameters on exit, with final value returned in Fmin. Most of the
other parameters can be found from the help page for optim. However the interface for the
C language proves hard to use and debug for even advanced users which makes it much less
popular when compared to optim function.

We also need to note that, at the time of writing, the provided implementation of "SANN"

actually requires evaluation of an user provided R function internally through argument ex for
generating a new candidate point which makes it almost impossible to use in C language. To
solve this issue, we manually changes the original codes for "SANN" to remove the requirement
for R function evaluation and provided it using same interface within our package roptim.

2.3. The C++ interface: class Roptim

The Roptim class is designed to provide a single, unified interface for performing general
purpose optimization in a similar fashion to optim() so that users of optim function can

Yi Pan, Jianxin Pan 5

easily convert their existing code or implement their optimization tasks in C++ by employing
Rcpp package and RcppArmadillo package which provide a bidirectional interface between R

and C++ at the object level.

The implementation is provided as a template class within the roptim namespace and can
be defined as

Roptim<YourTask> opt(method);

where implementation of YourTask will be discussed shortly in next section and method should
be chosen from "Nelder-Mead", "BFGS", "CG", "L-BFGS-B" and "SANN". For an instance of
Roptim class named as opt, its member functions and variables are listed below.

• opt.set_method(method)

specifies the method to be used. Again, method should be chosen from "Nelder-Mead",
"BFGS", "CG", "L-BFGS-B" and "SANN".

• opt.set_lower(vec)/opt.set_upper(vec)

sets bounds on the variables for the "L-BFGS-B" method where vec is a arma::vec.

• opt.set_hessian(flag)

Logical. Should a numerically differentiated Hessian matrix be computed?

• opt.minimize(task, par)

performs the optimization task. Here task is an instance of YourTask and par is the
vector of starting values with type arma::vec. Once the optimization is finished, par

will be overwritten by the optimized points.

• opt.control.var

control is a public data member of type RoptimControl. Here RoptimControl is an
internal member class (or nested class) of Roptim and defines all control parameters
with public access. Control parameter var can be one of the following variable:

– trace

Non-negative integer. If positive, tracing information on the progress of the opti-
mization is produced. Higher values may produce more tracing information: for
method "L-BFGS-B" there are six levels of tracing. (To understand exactly what
these do see the source code: higher levels give more detail.)

– fnscale

An overall scaling to be applied to the value of objective function and gradient
during optimization. If negative, turns the problem into a maximization problem.
Optimization is performed on task(par)/fnscale.

– parscale

A vector of scaling values for the parameters. Optimization is performed on
par/parscale and these should be comparable in the sense that a unit change
in any element produces about a unit change in the scaled value.

– ndeps

A vector of step sizes for the finite-difference approximation to the gradient, on
par/parscale scale. Defaults to 1e-3.

6 roptim: General Purpose Optimization with C++

– maxit

The maximum number of iterations. Defaults to 100 for the derivative-based
methods, and 500 for "Nelder-Mead".

For "SANN", maxit gives the total number of function evaluations: there is no other
stopping criterion. Defaults to 10000.

– abstol

The absolute convergence tolerance. Only useful for non-negative functions, as a
tolerance for reaching zero.

– reltol

Relative convergence tolerance. The algorithm stops if it is unable to reduce the
value by a factor of reltol * (abs(val) + reltol) at a step. Defaults to 1e-8.

– alpha, beta, gamma

Scaling parameters for the "Nelder-Mead" method. alpha is the reflection factor
(default 1.0), beta the contraction factor (0.5) and gamma the expansion factor
(2.0).

– REPORT

The frequency of reports for the "BFGS", "L-BFGS-B" and "SANN" methods if
opt.control.trace is positive. Defaults to every 10 iterations for "BFGS" and
"L-BFGS-B", or every 100 temperatures for "SANN".

– warn_1d_NelderMead

a logical indicating if the (default) "Nelder-Mead" method should signal a warn-
ing when used for one-dimensional minimization. As the warning is sometimes
inappropriate, you can suppress it by setting this option to false.

– type

for the conjugate-gradients method. Takes value 1 for the Fletcher-Reeves update,
2 for Polak-Ribiere and 3 for Beale-Sorenson.

– lmm

is an integer giving the number of BFGS updates retained in the "L-BFGS-B"

method, It defaults to 5.

– factr

controls the convergence of the "L-BFGS-B" method. Convergence occurs when the
reduction in the objective is within this factor of the machine tolerance. Default
is 1e7, that is a tolerance of about 1e-8.

– pgtol

helps control the convergence of the "L-BFGS-B" method. It is a tolerance on the
projected gradient in the current search direction. This defaults to zero, when the
check is suppressed.

– temp

controls the "SANN" method. It is the starting temperature for the cooling schedule.
Defaults to 10.

– tmax

is the number of function evaluations at each temperature for the "SANN" method.
Defaults to 10.

Yi Pan, Jianxin Pan 7

Once the optimization task is done by using opt.minimize(), some remaining member func-
tions of Roptim class, for printing or extracting the results, can be used safely.

• opt.print()

prints all relevant results of the optimization task.

• opt.par()

returns the best set of parameters found and has the same values with par which is
updated after we called opt.minimize(task, par).

• opt.value()

returns the corresponding value of function being optimized (i.e., task(par)).

• opt.fncount()

returns the number of objective function evaluation times.

• opt.grcount()

returns the number of gradient evalution times.

• opt.convergence()

An integer code. 0 indicates successful completion (which is always the case for "SANN").
Possible error codes are

– 1

indicates that the iteration limit maxit had been reached.

– 10

indicates degeneracy of the Nelder-Mead simplex.

– 51

indicates a warning from the "L-BFGS-B" method; see message for further details.

– 52

indicates an error from the "L-BFGS-B" method; see message for further details.

• opt.message()

returns a character string giving any additional information returned by the optimizer,
or NULL.

• opt.hessian()

returns a numerically differentiated hessian matrix.

2.4. The C++ interface: class Functor

In contrast to optim, both objective function and gradient should be stored within a single
class when using class Roptim. This design may bring additional benefit since it is common
for the objective function and gradient to have some shared computational part, and we
will discuss it in Section 3.3. The pseudo code below shows how to define a class for your
optimization task with Functor.

8 roptim: General Purpose Optimization with C++

struct YourTask : public Functor {

public:

double operator()(const vec &par) override; // objective function

void Gradient(const vec &par, vec &grad) override; // gradient

void Hessian(const vec &par, mat &hess) override; // hessian

};

double YourTask::operator()(const vec &par){

// code for evaluating objective function

}

void YourTask::Gradient(const vec &par, vec &grad){

// code for evaluating gradient

}

void YourTask::Hessian(const vec &par, mat &hess){

// code for evaluating hessian

}

YourTask should be defined as a class derived from an abstract template base class named
Functor within namespace roptim. It is helpful to know the fact that when our own version
of Gradient() and Hessian() are not defined in class YourTask, we will automatically have
the inherited version of Gradient() and Hessian() from class Functor instead which pro-
vide forward-difference approximation of gradient (through task.ApproximateGradient(par,

grad)) and Hessian (through task.ApproximateHessian(par, grad)) respectively. In other
words, numerical gradient will be generated if a non-derivative-free algorithm is employed.
The only exception is that when we use "SANN", the member function Gradient() (which
specifies the function to generate a new candidate point) will never be used in the optimization
process unless we explicit tell it to; See an example in Section 3.2.

Obviously, we need to implement the objective function as it is always needed for optimization
tasks and the call operator is defined as a pure virtual member function in its base class
Functor. We also need to note that the implementation of member function Gradient() is
usually required and is only optional for "Nelder-Mead" (it is a derivative-free method) and
"SANN" (a default Gaussian Markov kernel is used for generating a new candidate point when
Gradient() is not defined) while Hessian() is always optional since none of five algorithms
require the evaluation of Hessian matrix during optimization process.

3. Examples

3.1. Rosenbrock function

In this section, we will take Rosenbrock function, which is a non-convex function and used as
an example in help page of optim function, to illustrate the use of Roptim class.

The Rosenbrock function is defined by

f(x1, x2) = (1 − x1)2 + 100(x2 − x2
1)2 (2)

Yi Pan, Jianxin Pan 9

and obviously it has a global minimum of 0 at the point (1, 1). The corresponding class for
this function can be defined as follows.

class Rosen : public Functor {

public:

double operator()(const arma::vec &x) override {

double x1 = x(0);

double x2 = x(1);

return 100 * std::pow((x2 - x1 * x1), 2) + std::pow(1 - x1, 2);

}

void Gradient(const arma::vec &x, arma::vec &gr) override {

gr = arma::zeros<arma::vec>(2);

double x1 = x(0);

double x2 = x(1);

gr(0) = -400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1);

gr(1) = 200 * (x2 - x1 * x1);

}

void Hessian(const arma::vec &x, arma::mat &he) override {

he = arma::zeros<arma::mat>(2, 2);

double x1 = x(0);

double x2 = x(1);

he(0, 0) = -400 * x2 + 1200 * x1 * x1 + 2;

he(0, 1) = -400 * x1;

he(1, 0) = he(0, 1);

he(1, 1) = 200;

}

};

Given the starting values (-1.2, 1), the following C++ function example1_rosen_bfgs() is
used to apply the BFGS algorithm for the minimization of Rosenbrock function.

// [[Rcpp::export]]

void example1_rosen_bfgs()

{

Rosen rb;

Roptim<Rosen> opt("BFGS");

opt.control.trace = 1;

opt.set_hessian(true);

arma::vec x = {-1.2, 1};

opt.minimize(rb, x);

Rcpp::Rcout << "-------------------------" << std::endl;

10 roptim: General Purpose Optimization with C++

opt.print();

}

By calling the function above in R environment, we have the outputs for tracing information
(reported every 10 iterations) on the progress of BFGS optimization as follows where each
line prints the iteration number and the value for objective function. Complete results of
minimization are also printed after the dashed line. In this case, the expected global minimum
point (1.0000, 1.0000) is obtained after roughly 40 iterations with 110 function and 43 gradient
evaluations in BFGS algorithms.

R> example1_rosen_bfgs()

initial value 24.200000

iter 10 value 1.367383

iter 20 value 0.134560

iter 30 value 0.001978

iter 40 value 0.000000

final value 0.000000

converged

.par()

1.0000 1.0000

.value()

9.59496e-18

.fncount()

110

.grcount()

43

.convergence()

0

.message()

NULL

.hessian()

8.0200e+02 -4.0000e+02

-4.0000e+02 2.0000e+02

As the member functions for objective function, gradient and Hessian are all implemented in
class Rosen, we can easily try other algorithms by explicitly providing the method name
(Note: if we leave it as blank, then "Nelder-Mead" will be used by default) when we create
an object for Roptim. By default, the implemented member function Gradient() will not
be used to generate a new candidate point in "SANN" and we will illustrate how to explicitly
allow Gradient() generating new point in Section 3.2.

Yi Pan, Jianxin Pan 11

// [[Rcpp::export]]

void example1_rosen_other_methods()

{

Rosen rb;

arma::vec x;

// "Nelder-Mead": converged

Roptim<Rosen> opt1;

x = {-1.2, 1};

opt1.minimize(rb, x);

opt1.print();

// "CG": did not converge in the default number of steps

Roptim<Rosen> opt2("CG");

x = {-1.2, 1};

opt2.minimize(rb, x);

opt2.print();

// "CG": did not converge in the default number of steps

Roptim<Rosen> opt3("CG");

opt3.control.type = 2;

x = {-1.2, 1};

opt3.minimize(rb, x);

opt3.print();

// "L-BFGS-B"

Roptim<Rosen> opt4("L-BFGS-B");

x = {-1.2, 1};

opt4.minimize(rb, x);

opt4.print();

// "SANN"

Roptim<Rosen> opt5("SANN");

x = {-1.2, 1};

opt5.minimize(rb, x);

opt5.print();

}

The gradient and Hessian computation proves to be notoriously difficult to debug and get them
right with the increased complexity of functions. Sometimes a subtly buggy implementation
will manage to learn something that can look surprisingly reasonable while performing less well
than the correct one. It is possible (but not recommended) to define a class RosenNoGrad

without the implementation for gradient and still apply the non-gradient-free algorithms (e.g.
BFGS).

class RosenNoGrad : public Functor {

public:

12 roptim: General Purpose Optimization with C++

double operator()(const arma::vec &x) override {

double x1 = x(0);

double x2 = x(1);

return 100 * std::pow((x2 - x1 * x1), 2) + std::pow(1 - x1, 2);

}

};

// [[Rcpp::export]]

void example1_rosen_nograd_bfgs()

{

RosenNoGrad rb;

Roptim<RosenNoGrad> opt("BFGS");

arma::vec x = {-1.2, 1};

opt.minimize(rb, x);

opt.par().t().print("par = ");

}

In this case, numerical approximation of gradient will be used when needed for BFGS algo-
rithm as we indicated in Section 2.4. The R output for the function above indicates that the
optimized parameters found is (0.9998, 0.9996) which is not as good as the class Rosen with
explicit gradient implementation.

R> example1_rosen_nograd_bfgs()

par =

0.9998 0.9996

The gradient/Hessian checking is critical for ensuring the correctness of any optimization
task that apply algorithms with gradient/Hessian evaluations. At the time of writing, there
is no standard way to perform a gradient/Hessian checking. We suggest simply compare the
analytic and numerically approximated results for gradient/Hessian, and for each value, they
should agree to at least 4 significant digits (and often many more).

// [[Rcpp::export]]

void example1_rosen_grad_hess_check() {

Rosen rb;

arma::vec x = {-1.2, 1};

arma::vec grad1, grad2;

rb.Gradient(x, grad1);

rb.ApproximateGradient(x, grad2);

arma::mat hess1, hess2;

rb.Hessian(x, hess1);

rb.ApproximateHessian(x, hess2);

Yi Pan, Jianxin Pan 13

Rcpp::Rcout << "Gradient checking" << std::endl;

grad1.t().print("analytic:");

grad2.t().print("approximate:");

Rcpp::Rcout << "-------------------------" << std::endl;

Rcpp::Rcout << "Hessian checking" << std::endl;

hess1.print("analytic:");

hess2.print("approximate:");

}

The R output for function example1_rosen_grad_hess_check() indicates that our imple-
mentations for gradient and Hessian of Rosenbrock function are probably correct.

R> example1_rosen_grad_hess_check()

Gradient checking

analytic:

-2.1560e+02 -8.8000e+01

approximate:

-2.1560e+02 -8.8000e+01

Hessian checking

analytic:

1.3300e+03 4.8000e+02

4.8000e+02 2.0000e+02

approximate:

1.3300e+03 4.8000e+02

4.8000e+02 2.0000e+02

3.2. The travelling salesman problem

In this section, we apply the simulated annealing ("SANN") to solve the travelling salesman
problem using eurodist data which gives the road distances (in km) between 21 cities in
Europe and has been previously analysed using optim function (presented on optim’s help
page).

The travelling salesman problem (TSP) is a Non-deterministic Polynomial-time hard (NP-
hard) problem in combinatorial optimization, and is important in operations research and
theoretical computer science. It presents the task of finding the most efficient route through
a set of given cities where each city should be passed only once. For n cites, we define a
distance matrix D = (di,j)n×n to store distances between all pair of cites, where each element
di,j of matrix D represents the distance between city i and j. We use a set of permutations
π of integers from 1 to n, which contains all the possible tours of the problem. The goal is to
find a permutation π = (π(1), π(2), · · · , π(n), π(n + 1)) that minimizes

f(π) =
n

∑

i=1

dπ(i),π(i+1). (3)

14 roptim: General Purpose Optimization with C++

where π(n+1) = π(1) so that the route ends with the starting city. The class for this objective
function and the corresponding function for generating new candidate points can be defined
as follows. Note that by default "SANN" always uses Gaussian Markov kernel to generate a
new candidate point (even if member function Gradient() is implemented), and we need to
explicitly set os.sann_use_custom_function_ as true so that "SANN" will use Gradient()

for generating new points internally.

class TSP : public Functor {

public:

// Constructor

TSP(const arma::mat &distmat) : distmat_(distmat) {

// Allows "SANN" using Gradient() to generate new candidate point

os.sann_use_custom_function_ = true;

}

double operator()(const arma::vec &sq) override {

arma::uvec idx1(sq.size() - 1);

arma::uvec idx2(sq.size() - 1);

std::copy(sq.cbegin(), sq.cend() - 1, idx1.begin());

std::copy(sq.cbegin() + 1, sq.cend(), idx2.begin());

// vectors in C++ are zero indexed

idx1.for_each([](arma::uvec::elem_type &val) { val -= 1.0; });

idx2.for_each([](arma::uvec::elem_type &val) { val -= 1.0; });

arma::vec distvec(sq.size() - 1);

for (std::size_t idx = 0; idx != distmat_.n_rows; ++idx) {

distvec(idx) = distmat_(idx1(idx), idx2(idx));

}

return arma::sum(distvec);

}

// Generates a new candidate point for "SANN".

// (Actually it has nothing to do with "gradient")

void Gradient(const arma::vec &sq, arma::vec &grad) override {

grad = sq;

arma::vec idx =

arma::linspace(2, distmat_.n_rows - 1, distmat_.n_rows - 2);

arma::vec changepoints = Rcpp::RcppArmadillo::sample(idx, 2, false);

changepoints.for_each([](arma::vec::elem_type &val) { val -= 1.0; });

grad(changepoints(0)) = sq(changepoints(1));

grad(changepoints(1)) = sq(changepoints(0));

Yi Pan, Jianxin Pan 15

}

private:

arma::mat distmat_;

};

We present in Figure 1 the initial solution of travelling salesman problem where the sequence
is generated according to the alphabetic orders of 21 cities:

R> sq <- c(1:nrow(eurodistmat), 1) # Initial sequence: alphabetic

R> distance(sq)

R> # rotate for conventional orientation

R> loc <- -cmdscale(eurodist, add = TRUE)$points

R> x <- loc[,1]; y <- loc[,2]

R> s <- seq_len(nrow(eurodistmat))

R> tspinit <- loc[sq,]

R>

R> plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", axes = FALSE)

R> arrows(tspinit[s,1], tspinit[s,2], tspinit[s+1,1], tspinit[s+1,2],

+ angle = 10, col = "green")

R> text(x, y, labels(eurodist), cex = 0.8)

and obviouly it is not the best route for TSP.

Given the eurodist data and initial solution (i.e., stating values), the following C++ function
example2_tsp_sann() is used to apply the simulated annealling algorithm for solving the
travelling salesman problem.

// [[Rcpp::export]]

Rcpp::List example2_tsp_sann(arma::mat eurodistmat, arma::vec x) {

TSP dist(eurodistmat);

Roptim<TSP> opt("SANN");

opt.control.maxit = 30000;

opt.control.temp = 2000;

opt.control.trace = true;

opt.control.REPORT = 500;

opt.minimize(dist, x);

Rcpp::Rcout << "-------------------------" << std::endl;

opt.print();

return Rcpp::List::create(Rcpp::Named("par") = x);

}

By calling the function above in R environment, we can obtain the optimized parameters to
plot the new route which is presented in Figure 2.

16 roptim: General Purpose Optimization with C++

Athens

Barcelona

Brussels
Calais

Cherbourg

Cologne

Copenhagen

Geneva

Gibraltar

Hamburg

Hook of Holland

Lisbon

LyonsMadrid

Marseilles

Milan

Munich

Paris

Rome

Stockholm

Vienna

Figure 1: Initial solution of travelling salesman problem (TSP) for eurodist data.

R> set.seed(4) # chosen to get a good soln relatively quickly

R> res <- example2_tsp_sann(eurodistmat, sq)

R> tspres <- loc[res$par,]

R> plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", axes = FALSE)

R> arrows(tspres[s,1], tspres[s,2], tspres[s+1,1], tspres[s+1,2],

+ angle = 10, col = "red")

R> text(x, y, labels(eurodist), cex = 0.8)

3.3. Joint mean-covariance models

Yi Pan, Jianxin Pan 17

Athens

Barcelona

Brussels
Calais

Cherbourg

Cologne

Copenhagen

Geneva

Gibraltar

Hamburg

Hook of Holland

Lisbon

LyonsMadrid

Marseilles

Milan

Munich

Paris

Rome

Stockholm

Vienna

Figure 2: "SANN" solution of travelling salesman problem (TSP) for eurodist data.

In this section, we use modified Cholesky decomposition (MCD) based joint mean-covariance
model (Pan and Mackenzie 2003) as a more advanced example to illustrate that how to per-
form optimization tasks by using Roptim. MCD is one of the three Cholesky decomposition
based methods used in R package jmcm for joint modelling of mean and covariance structures
in longitudinal data that follows a Gaussian distribution, where the other two are based on
alternative Cholesky decomposition (ACD) and hyper-spherical parametrization of Cholesky
factor (HPC). Following Pan and Pan (2017), BFGS algorithm will be used for the optimiza-
tion in joint mean-covariance modelling. As this example is much more complex than the
first two, pseudo code will be used instead so that we can explain the techniques used in the
implementation more clearly. Complete implementation can be found in source code of latest
jmcm package (Pan and Pan 2018).

18 roptim: General Purpose Optimization with C++

Let yi be a mi × 1 vector representing measurements on the ith of n subjects and mi will
be subject-specific so that both balanced and unbalanced longitudinal data can be modelled.
It is assumed that yi ∼ Nmi

(µi, Σi), where µi and Σi is an mi × 1 vector and an mi ×
mi positive definite matrix, respectively. Since the subject-specific covariance matrix Σi is
positive definite, there exists a unique lower triangular matrix Ti with 1’s as main diagonal
entries and a unique diagonal matrix Di with positive diagonal entries such that TiΣiT

⊤
i = Di.

Without understanding the technical details, three regression based models are proposed to
model the elements in µi, Di(ζi) and Ti(φi),

µi = Xiβ, ζi = Ziλ, φi = Wiγ (4)

where ζi and φi are vectors of unknown elements in Di and Ti accordingly, Xi, Zi and Wi

denotes the three pre-specified model matrices, β, λ and γ are the corresponding regression
coefficient vectors. Then the objective function, minus twice the log-likelihood function,
except for a constant, is given by

−2l =
n

∑

i=1

log |T −1
i D2

i T −⊤

i | +
n

∑

i=1

r⊤

i T ⊤

i D−2
i Tiri, (5)

where ri = yi − Xiβ is the vector of residuals for the ith subject. The corresponding gradient
for β, λ and γ becomes

U1(β) =
n

∑

i=1

X⊤

i Σ−1
i (yi − Xiβ),

U2(λ) =
1

2

n
∑

i=1

Z⊤

i (D−2
i ei − 1mi

),

U3(γ) =
n

∑

i=1

G⊤

i D−2
i (ri − Giγ),

(6)

where both the matrix Gi and vector ei rely on the updates of first regression model µi = Xiβ

for the mean structure and their complete definitions can be found in Pan and Pan (2017).

To obtain the maximum likelihood estimation (MLE) of three parameters β, λ and γ, it is
quite straightforward to follow the Rosenbrock example by implementing both the objective
function (i.e., −2l(θ)) and gradient (i.e., U(θ) = (U1(β)⊤, U2(λ)⊤, U3(γ)⊤)⊤), then with the
starting values for parameters θ = (β⊤, λ⊤, γ⊤)⊤ we can apply the BFGS optimization algo-
rithms provided in Roptim. It is not hard to find that for any given values of θ, both objective
function and gradient depend on the updates of three models in Equation (4) and we will
present shortly how to avoid unnecessary computation for updating these models in member
functions for objective function and gradient with the same θ by using cached values.

As suggested in Pan and Mackenzie (2003), the actual algorithm is a bit more sophisticated
since the three parameters are asymptotically independent. In other words, it is possible to
update the parameter one by one in each iteration with the other two fixed. At the same
time, two parameters β and γ have the following explicit updating forms,

β = (
n

∑

i=1

X⊤

i Σ−1
i Xi)

−1
n

∑

i=1

X⊤

i Σ−1
i yi,

γ = (
n

∑

i=1

G⊤

i D−2
i Gi)

−1
n

∑

i=1

G⊤

i D−2
i ri,

(7)

Yi Pan, Jianxin Pan 19

free_param_ Description

0 no parameters will be fixed.
1 β is the free parameter; λ and γ will be fixed.
2 λ is the free parameter; β and γ will be fixed.
3 γ is the free parameter; β and λ will be fixed.
23 (λ⊤, γ⊤)⊤ is the free parameter; β will be fixed.

Table 2: Valid values and description for a dummy variable.

and λ is the only parameter that need to be updated by performing the numerical optimiza-
tion. Ideally, we require a class MCD that is able to keep the value of β and γ fixed so that
we can perform the BFGS optimization on λ easily. It is achieved by introducing a dummy
variable named free_param_ whose valid values and corresponding descriptions are listed
in Table 2. Note that value 23 for free_param_ is not used in our example since the two
parameters λ and γ are asymptotically independent in MCD, but in ACD/HPC it is not the
same case and these two parameters should be optimized together. A simplified version of
class MCD is provided as follows.

class MCD : public Functor {

public:

double operator()(const arma::vec &x) override {

UpdateMCD(x);

// implementation of objective function

}

void Gradient(const arma::vec &x, arma::vec &grad) override {

UpdateMCD(x);

if (free_param_ == 0) {

arma::vec grad1, grad2, grad3;

GradientBeta(grad1);

GradientLambda(grad2);

GradientGamma(grad3);

grad = concatenate(grad1, grad2, grad3);

} else if (free_param_ == 1) {

GradientBeta(grad);

} else if (free_param_ == 2) {

GradientLambda(grad);

} else if (free_param_ == 3) {

GradientGamma(grad);

}

}

GardientBeta(arma::vec &grad1) { // implementation of U1 }

GradientLambda(arma::vec &grad2) { // implementation of U2 }

GradientGamma(arma::vec &grad3) { // implementation of U3 }

20 roptim: General Purpose Optimization with C++

void UpdateMCD(const arma::vec &x);

void UpdateBeta() {

// implementation of updating form for beta

set_free_param(1); // 1. fix values of lambda and gamma temporarily

// by setting free_param_ to 1

UpdateMCD(beta); // 2. update parameters and models in the cache

set_free_param(0); // 3. set free_param_ back to default value 0

}

void UpdateGamma() {

// implementation of updating form for gamma

set_free_param(3); // 1. fix values of beta and lambda temporarily

// by setting free_param_ to 3

UpdateMCD(gamma); // 2. update parameters and models in the cache

set_free_param(0); // 3. set free_param_ back to default value 0

}

void set_free_param(int val) { free_param_ = val; }

private:

int free_param_ = 0;

arma::mat X_, Z_, W_; // model matrices

arma::vec theta_, beta_, lambda_, gamma_; // cached parameters

arma::mat Xbta_, Zlmd_, Wgma_; // cache for three regression models

};

In contrast to class Rosen, both the member functions of call operator (i.e., objective func-
tion) and Gradient() in MCD called UpdateMCD() at the very beginning which is intended
to check whether the supplied parameter x is different from its cached value, if yes, update
the parameters and three regression models in the cache accordingly. Similarly, the member
function UpdateMCD() is also used in UpdateBeta() and UpdateGamma() to keep values of
parameters and models in the cache updated after updating the value of β and γ respectively.
The internal behaviour of UpdateMCD() is largely controlled by the value of free_param_ and
its full implementation should be as follows.

void MCD::UpdateMCD(const arma::vec &x) {

// Step 1. Compare x with cached value for parameters

// and decide if update is necessary

bool update_flag = true;

if (free_param_ == 0 && IsEqual(x, theta_)) {

update_flag = false;

} else if (free_param_ == 1 && IsEqual(x, beta_)) {

update_flag = false;

} else if (free_param_ == 2 && IsEqual(x, lambda_)) {

update_flag = false;

} else if (free_param_ == 3 && IsEqual(x, gamma_)) {

update_flag = false;

}

Yi Pan, Jianxin Pan 21

// Step 2. Update values in the cache when needed

if (update_flag) {

// Step 2.1. Update cached parameters

if (free_param_ == 0) {

theta _ = x;

// also update beta_, lambda_ & gamma_

} else if (free_param_ == 1) {

beta_ = x;

// also update theta_

} else if (free_param_ == 2) {

lambda_ = x;

// also update theta_

} else if (free_param_ == 3) {

gamma_ = x;

// also update theta_

}

// Step 2.2. Update three regression models in the cache

if (free_param_ == 0) {

Xbta_ = X_ * beta_;

Zlmd_ = Z_ * lambda_;

Wgam_ = W_ * gamma_;

} else if (free_param_ == 1) {

Xbta_ = X_ * beta_;

} else if (free_param_ == 2) {

Zlmd_ = Z_ * lambda_;

} else if (free_param_ == 3) {

Wgam_ = W_ * gamma_;

}

}

}

It is not unusual for objective function and gradient having some common computation parts,
and defining them within the same class make it possible to avoid unnecessary computation by
storing the results of common part in the cache and update them only when it is necessary.
The use of dummy variable free_param_ enables us to change the behaviour of member
functions for objective function and gradient so that we can optimize some parameters with
others fixed. To minimize the objective function −2l(θ) and obtain the MLE of θ, we can
easily apply the profile (i.e., estimating parameters one by one with other parameters fixed in
each iteration) and non-profile approaches; See Appendix B for the comparison of these two
approaches using two real datasets.

void mcdfit (...) {

MCD mcd; // Create an instance of mcd

// by default, free_param_ should be set to 0

Roptim<MCD> opt("BFGS");

22 roptim: General Purpose Optimization with C++

arma::vec x = start_value; // the starting values for theta

if (profile) {

// Initializations

for (std::size_t iter = 0; iter != kMaxIteration; ++iter) {

// Update beta and values in the cache

mcd.UpdateBeta();

// Set parameter lambda from x

// Optimize lambda and update values in the cache

mcd.set_free_param(2); // 1. fix values of beta and gamma temporarily

// by setting free_param_ to 2

opt.minimize(mcd, lambda); // 2. perform the optimization on lambda

mcd.UpdateMCD(lambda); // 3. update parameters and models in cache

mcd.set_free_param(0); // 4. set free_param_ back to default value 0

// Update gamma and values in the cache

mcd.UpdateGamma();

// Compare x with updated theta in mcd

// If a pre-specified criterion is met, break the for loop

// else update x with theta

}

} else {

opt.minimize(mcd, x);

}

}

The actual implementation for class MCD, ACD, HPC and the utility function for model fitting
are more complex as the three Cholesky based methods share quite a lot in common and we
even created a base class named JmcmBase and a model fitting class named JmcmFit for them
to avoid code duplication.

4. Conclusion

In this paper, we have illustrated the use of class Roptim and discussed some advanced
techniques used in implementation for optimization tasks. By using this new approach, R

users who are familiar with optim can easily convert their existing codes or write new codes
of optimization tasks in C++ for much faster speed and still get consistent results.

References

Bélisle CJ (1992). “Convergence Theorems for a Class of Simulated Annealing Algorithms on
Rd.” Journal of Applied Probability, 29(4), 885–895. doi:10.2307/3214721.

Yi Pan, Jianxin Pan 23

Byrd RH, Lu P, Nocedal J, Zhu C (1995). “A Limited Memory Algorithm for Bound Con-
strained Optimization.” SIAM Journal on Scientific Computing, 16(5), 1190–1208. doi:

10.2172/204262.

Eddelbuettel D, François R, Allaire J, Chambers J, Bates D, Ushey K (2011). “Rcpp: Seamless
R and C++ Integration.” Journal of Statistical Software, 40(8), 1–18. doi:10.18637/jss.

v040.i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. doi:

10.1016/j.csda.2013.02.005.

Fletcher R (1970). “A New Approach to Variable Metric Algorithms.” The Computer Journal,
13(3), 317–322. doi:10.1093/comjnl/13.3.317.

Fletcher R, Reeves CM (1964). “Function Minimization by Conjugate Gradients.” The Com-
puter Journal, 7(2), 149–154. doi:10.1093/comjnl/7.2.149.

Fox P (1997). “The Port Mathematical Subroutine Library, Version 3.” URL http://www.bell-
labs.com/project/PORT.

Nash JC (1990). Compact Numerical Methods for Computers: Linear Algebra and Function
Minimisation. CRC press.

Nash JC, Varadhan R, Grothendieck G, Nash MJC, Yes L (2016). “Package ’optimr’.”

Nash JC, Varadhan R, et al. (2011). “Unifying Optimization Algorithms to Aid Software
System Users: optimx for R.” Journal of Statistical Software, 43(9), 1–14. doi:10.18637/

jss.v043.i09.

Nelder JA, Mead R (1965). “A Simplex Method for Function Minimization.” The Computer
Journal, 7(4), 308–313. doi:10.1093/comjnl/7.4.308.

Pan J, Mackenzie G (2003). “On Modelling Mean-Covariance Structures in Longitudinal
Studies.” Biometrika, 90(1), 239–244. doi:10.1093/biomet/90.1.239.

Pan J, Pan Y (2017). “jmcm: An R Package for Joint Mean-Covariance Modeling of Longi-
tudinal Data.” Journal of Statistical Software, 82(9), 1–29. doi:10.18637/jss.v082.i09.

Pan J, Pan Y (2018). jmcm: Joint Mean-Covariance Models using Armadillo and S4. R

package version 0.1.8.0, URL https://CRAN.R-project.org/package=jmcm.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Schnabel RB, Koonatz JE, Weiss BE (1985). “A Modular System of Algorithms for Un-
constrained Minimization.” ACM Transactions on Mathematical Software (TOMS), 11(4),
419–440. doi:10.21236/ada123204.

Team RC (1999). “Writing R Extensions.” R Foundation for Statistical Computing.

24 roptim: General Purpose Optimization with C++

Theussl S, Borchers H (2014). “CRAN Task View: Optimization and Mathemat-
ical Programming.” Technical report, Version 2014-08-08, URL http://CRAN.R-
project.org/view=Optimization.

Wright SJ, Nocedal J (1999). “Numerical Optimization.” Springer Science, 35(67-68), 7.

Yi Pan, Jianxin Pan 25

A. Reimplementing two simple optimization tasks in C++

There are in total four examples given on the document page of optim() to demonstrate
its useage of performing general optimization tasks. We have discussed the first and second
example (i.e., minimizing Rosenbrock function and solving txravelling salesman problem)
using our new approach in Section 3.1 and 3.2 respectively. The remaining two problems
will be illustrated here as simple examples of reimplementing R code of minimization tasks
in C++.

The third example provided by roptim() is given as follows:

R> flb <- function(x)

R> { p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }

R> ## 25-dimensional box constrained

R> optim(rep(3, 25), flb, NULL, method = "L-BFGS-B",

R> lower = rep(2, 25), upper = rep(4, 25)) # par[24] is *not* at boundary

and same results can be obtained by calling the following C++ function in R environment:

class Flb : public Functor {

public:

double operator()(const arma::vec &x) override {

int p = x.size();

arma::vec part1 = arma::ones<arma::vec>(p) * 4;

part1(0) = 1;

arma::vec tmp = arma::ones<arma::vec>(p);

std::copy(x.cbegin(), x.cend() - 1, tmp.begin() + 1);

arma::vec part2 = arma::pow(x - arma::pow(tmp, 2), 2);

return arma::dot(part1, part2);

}

};

// [[Rcpp::export]]

void example3_flb_25_dims_box_con() {

Flb f;

arma::vec lower = arma::ones<arma::vec>(25) * 2;

arma::vec upper = arma::ones<arma::vec>(25) * 4;

Roptim<Flb> opt("L-BFGS-B");

opt.set_lower(lower);

opt.set_upper(upper);

opt.control.trace = 1;

arma::vec x = arma::ones<arma::vec>(25) * 3;

26 roptim: General Purpose Optimization with C++

opt.minimize(f, x);

Rcpp::Rcout << "-------------------------" << std::endl;

opt.print();

}

The fourth example provided by roptim() is given as follows:

R> ## "wild" function , global minimum at about -15.81515

R> fw <- function (x)

R> 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80

R> res <- optim(50, fw, method = "SANN",

R> control = list(maxit = 20000, temp = 20, parscale = 20))

R> res

R> ## Now improve locally {typically only by a small bit}:

R> (r2 <- optim(res$par, fw, method = "BFGS"))

and similar results (as "SANN" is used) can be obtained by calling the following C++ function
in R environment:

class Fw : public Functor {

public:

double operator()(const arma::vec &xval) override {

double x = arma::as_scalar(xval);

return 10 * std::sin(0.3 * x) * std::sin(1.3 * std::pow(x, 2.0)) +

0.00001 * std::pow(x, 4.0) + 0.2 * x + 80;

}

};

// [[Rcpp::export]]

void example4_wild_fun() {

Fw f;

Roptim<Fw> opt("SANN");

opt.control.maxit = 20000;

opt.control.temp = 20;

opt.control.parscale = 20;

arma::vec x = {50};

opt.minimize(f, x);

x.print();

Roptim<Fw> opt2("BFGS");

opt2.minimize(f, x);

x.print();

}

Yi Pan, Jianxin Pan 27

B. Profile vs Non-profile for joint mean-covariance models

For joint mean-covariance models, most publications suggest using a profile method – in
each iteration, update the parameter one by one with other parameters fixed and only the
parameter without explicit updating form should be numerically optimized. However, as we
have presented in Section 3.3, it is actually more straight-forward to implement a non-profile
method for obtaining the maximum likelihood estimations (MLE) of the models where all
parameters are updated together through a specific optimization algorithm. The performance
of two aforementioned methods remain unclear and it is intuitive to assume they will simply
get similar results.

Following Pan and Pan (2017), we applied both profile and non-profile approaches to Ken-
ward’s cattle data (balanced longitudinal data) and CD4 cell data (unbalanced longitudinal
data) using the three methods provided in package jmcm (i.e., MCD, ACD and HPC) respec-
tively. For simplicity, detailed analysis of the two datasets with comparisons between three
provided Cholesky decomposition based joint mean-covariance models will not be repeated
here so that we can focus on comparing profile and non-profile approaches.

Results for analysing Kenward’s cattle data using profile and non-profile approach are re-
ported in Table 3 and Table 4; and results for analysing CD4 cell data using profile and
non-profile approach are reported in Table 5 and Table 6. For each table, order (p,d,q) of
three polynomials for constructing the three covariate matrices (i.e., Xi, Zi and Wi in three
regression models), number of parameters, maximum likelihood lmax, BIC value and execu-
tion time (in seconds) are reported. From Table 3 and Table 4, we find that both methods get
really close results for lmax and BIC while non-profile method run much faster than profile
method under the same condition; by comparing Table 5 and Table 6, we can draw similar
conclusions. Our tests were conducted under macOS 10.13 on MacBook Pro (15-inch, 2017)
equipped with an Intel(R) Core(TM) i7 2.8 GHz with 16 GB of RAM.

(p,d,q) No. of MCD ACD HPC
parms. lmax BIC Time lmax BIC Time lmax BIC Time

(8,3,4) 18 -771.0008 53.44077 1.218 -747.6994 51.88734 0.849 -745.2789 51.72598 10.830
(8,2,2) 15 -789.6174 54.34176 0.856 -750.8567 51.75771 0.565 -746.9001 51.49394 2.358
(10,10,10) 33 -738.1605 52.95202 1.432 -750.2582 53.75853 4.238 -803.5077 57.30850 5.852
(6,1,1) 11 -823.8421 56.16991 0.222 -763.5859 52.15283 2.370 -759.5982 51.88699 9.081
(3,3,3) 12 -825.3406 56.38318 1.088 -800.8233 54.74870 4.185 -798.1548 54.57080 10.743
(4,4,3) 14 -791.1546 54.33087 1.103 -760.6864 52.29965 4.527 -760.2976 52.27373 10.870
(7,2,2) 14 -791.7968 54.37368 0.939 -755.7579 51.97109 3.567 -751.8171 51.70837 9.491
(8,7,4) 22 -769.5308 53.79626 1.275 -745.1183 52.16876 2.504 -743.1843 52.03983 5.371
(9,1,3) 16 -794.7426 54.79681 0.188 -750.0151 51.81498 0.324 -746.7737 51.59888 1.764
(9,4,3) 19 -783.2145 54.36839 0.447 -746.3733 51.91231 0.453 -744.9884 51.81998 2.364
(9,8,5) 25 -754.3490 53.12426 0.341 -743.2158 52.38205 0.781 -741.6881 52.28020 2.131

Table 3: Kenward’s cattle data. Profile approach is used for joint mean-covariance models
fitting of MCD, ACD and HPC with different triples.

28 roptim: General Purpose Optimization with C++

(p,d,q) No. of MCD ACD HPC
parms. lmax BIC Time lmax BIC Time lmax BIC Time

(8,3,4) 18 -771.0008 53.44077 0.245 -747.7093 51.88800 0.438 -745.2910 51.72679 0.667
(8,2,2) 15 -789.6194 54.34189 0.165 -750.8625 51.75810 0.477 -746.9130 51.49480 0.737
(10,10,10) 33 -801.0659 57.14571 0.775 -884.8780 62.73318 1.507 -784.8915 56.06742 2.596
(6,1,1) 11 -823.8551 56.17078 0.129 -763.5859 52.15283 0.302 -759.5982 51.88699 0.639
(3,3,3) 12 -825.3397 56.38313 0.160 -800.8213 54.74857 0.373 -798.1533 54.57070 0.648
(4,4,3) 14 -791.1546 54.33087 0.139 -760.6863 52.29965 0.354 -760.2976 52.27373 0.794
(7,2,2) 14 -791.7973 54.37371 0.134 -755.7579 51.97109 0.399 -751.8874 51.71305 0.486
(8,7,4) 22 -769.5394 53.79684 0.237 -745.3062 52.18129 0.802 -743.5039 52.06114 1.916
(9,1,3) 16 -794.7449 54.79697 0.184 -750.0340 51.81624 0.529 -746.7799 51.59930 0.916
(9,4,3) 19 -783.2159 54.36849 0.330 -746.3798 51.91274 0.470 -744.9909 51.82015 0.993
(9,8,5) 25 -754.3426 53.12384 0.439 -743.2183 52.38222 0.781 -743.1342 52.37661 2.150

Table 4: Kenward’s cattle data. Non-profile approach is used for joint mean-covariance models
fitting of MCD, ACD and HPC with different triples.

(p,d,q) No. of MCD ACD HPC
parms. lmax BIC Time lmax BIC Time lmax BIC Time

(8,1,1) 13 -5008.753 27.35595 1.461 -4928.924 26.92328 14.347 -4892.679 26.72683 181.311
(8,1,3) 15 -4979.193 27.22777 1.491 -4927.492 26.94755 66.443 -4890.396 26.74649 188.726
(6,1,1) 11 -5018.470 27.37658 1.050 -4937.227 26.93624 12.220 -4902.175 26.74626 110.366
(3,3,3) 12 -5006.177 27.32597 8.484 -4951.234 27.02818 67.200 -4919.522 26.85630 190.214
(4,4,3) 14 -4995.510 27.30019 9.320 -4934.265 26.96824 69.153 -4902.100 26.79391 193.090
(8,3,3) 17 -4974.683 27.23536 5.751 -4919.700 26.93735 67.713 -4886.337 26.75652 191.743
(8,7,4) 22 -4971.715 27.29937 11.978 -4914.224 26.98776 89.213 -4881.750 26.81175 219.650
(9,1,3) 16 -4974.104 27.21621 1.640 -4918.684 26.91583 67.114 -4881.266 26.71302 189.024
(9,4,3) 19 -4970.209 27.24315 9.647 -4909.363 26.91336 70.601 -4875.877 26.73187 190.180
(9,8,5) 25 -4962.657 27.29833 12.977 -4901.842 26.96871 92.393 -4871.582 26.80470 232.216

Table 5: CD4 cell data. Profile approach is used for joint mean-covariance models fitting of
MCD, ACD and HPC with different triples.

(p,d,q) No. of MCD ACD HPC
parms. lmax BIC Time lmax BIC Time lmax BIC Time

(8,1,1) 13 -5008.753 27.35595 1.049 -4928.924 26.92328 5.043 -4892.682 26.72684 9.026
(8,1,3) 15 -4979.193 27.22777 1.282 -4927.492 26.94755 5.855 -4890.401 26.74652 10.196
(6,1,1) 11 -5018.470 27.37658 0.824 -4937.228 26.93625 2.809 -4902.176 26.74626 8.914
(3,3,3) 12 -5006.177 27.32597 1.214 -4951.238 27.02820 4.173 -4919.523 26.85630 9.370
(4,4,3) 14 -4995.509 27.30019 1.221 -4934.265 26.96824 5.550 -4902.110 26.79396 12.269
(8,3,3) 17 -4974.683 27.23536 1.362 -4919.700 26.93735 6.670 -4886.342 26.75655 12.527
(8,7,4) 22 -4971.712 27.29936 1.643 -4914.223 26.98776 5.708 -4881.737 26.81168 14.304
(9,1,3) 16 -4974.104 27.21621 1.330 -4918.687 26.91585 4.270 -4881.279 26.71309 14.452
(9,4,3) 19 -4970.209 27.24315 1.420 -4909.364 26.91337 4.920 -4875.877 26.73187 12.051
(9,8,5) 25 -4962.655 27.29832 1.937 -4901.842 26.96871 6.774 -4871.577 26.80467 15.585

Table 6: CD4 cell data. Non-profile approach is used for joint mean-covariance models fitting
of MCD, ACD and HPC with different triples.

Yi Pan, Jianxin Pan 29

Affiliation:

Yi Pan
Centre for Computational Biology
Haworth Building
University of Birmingham
Edgbaston
Birmingham, B15 2TT, United Kingdom
E-mail: Y.Pan@bham.ac.uk

URL: https://www.birmingham.ac.uk/staff/profiles/cancer-genomic/pan-yi.aspx

	Introduction
	Design of package roptim
	Overview of optimization task
	The C interface
	The C++ interface: class Roptim
	The C++ interface: class Functor

	Examples
	Rosenbrock function
	The travelling salesman problem
	Joint mean-covariance models

	Conclusion
	Reimplementing two simple optimization tasks in C++
	Profile vs Non-profile for joint mean-covariance models

