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1 The problem: ad-hoc specification searches

A researcher is studying economic growth and is specifically interested in the role
of Government (Nominal) GDP Share. After trying some preliminary models, he
comes up with a “good”, “parsimonious” specification with 10 control variables.
The coefficient is negative, “significant” and it even resists some “robustness”
checks. How reliable is this finding? Actually, not much. But this practice is
quite common.

Researchers usually engage in ad-hoc specification searches but present only
their favorite models. This, however, can easily underestimate the uncertainty
caused by model selection and lead to overconfident inferences. Since we are
dealing with nonexperimental data, the set of controls can be virtually unlimited
and the theory ambiguous about which ones do matter. In this example, it
turns out that one can come up with a different set of 10 controls in which the
coefficient for Government GDP Share is positive and“significant”. In fact, there
are 67 possible control variables, which could generate 148 quintillion different
models!

So how can we tackle that problem? This presentation will introduce the
R package sValues, which implements a measure of sturdiness of coefficients
proposed by Leamer[4] and discussed in Leamer[3]. The S-values try to provide
a sensible framework to assess the sensitivity of coefficient estimates to model
ambiguity. But before going to the R implementation, let’s see a brief description
of the method.

∗This vignette is a draft based on a poster presented on useR! 2015. I’ve learned a great
deal from discussions with Ed Leamer! I also thank Rasmus Baath, Danilo Freire and Douglas
Araujo for their comments. Of course, all remaining errors are my own. And all opinions
expressed in this material are mine and do not necessarily reflect the views of the CBB.
Contact: carloscinelli@hotmail.com
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2 S-Values: measures of the sturdiness of re-
gression coefficients

2.1 Extreme bounds for the coefficients

The different estimates for Government GDP Share can be interpreted as the
result of different strong prior beliefs: the coefficients of the ommited variables
are exactly zero, whereas, for the ones included in the model, we believe whatever
the data says. This suggests that a Bayesian approach could be useful to model
this problem. Consider the linear model y = Xβ + ε where ε ∼ N(0, σ2I) and
β ∼ N(0, V ). The OLS estimate of β is b = (X ′X)−1X ′y with precision matrix
H = (X ′X)/σ2. Then, the posterior mean of β is:

β̂(V ) = (H + V −1)−1Hb (1)

Notice that within this framework we can express model specifications in
terms of beliefs about the prior variance V . For example, regressions with subsets
of explanatory variables are akin to saying that the diagonal of V is really really
large (infinite) for some of them and really really small (zero) for others. If
we knew V exactly (or had a distribution for V ), then we would just have an
estimation problem. But, if V is ambiguous or disputable, then we might want
to know how sensitive β̂ is to “sensible” variations in the prior variance.

To come up with a set for possible V s, we might want to bound it from
below, excluding dogmatic priors of zero variances which would lead to inferences
unaffected by data. We might also want to bound it from above, preventing the
data to speak freely and limiting the influence of unimportant variables. So,
given that V is bounded from above and from below, V∗ ≤ V ≤ V ∗, Leamer[2]

shows that β̂ lies in the ellipsoid:

(β̂ − f)G(β̂ − f) ≤ c (2)

Where:

G = (H + V ∗−1)(V −1∗ − V ∗−1)−1(H + V ∗−1) + (H + V ∗−1)

f = (H + V −1∗ )−1[Hb+ (V −1∗ − V ∗−1)(H + V ∗−1)−1Hb/2]

c = b′H(H + V ∗−1)−1(V −1∗ − V ∗−1)(H + V ∗−1)−1Hb/4

Therefore the extreme bounds for a linear combination ψ′β̂(V ) are given by:

ψf ± (ψ′G−1ψ)
1
2 c

1
2 (3)

And our measure of the sturdiness of a coefficient, the S-value, can be defined
as:

s =
ψf

(ψ′G−1ψ)
1
2 c

1
2

(4)
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Figure 1: Ellipses of estimates. Source: Leamer[4]

When the S-value is less than 1 in absolute value this means that the coeffi-
cient is not sturdy - that is, it changes sign when V varies within the upper and
lower bounds. Figure 1 illustrates these ideas.

2.2 Conventional bounds for the prior variances

The problem now is how to find specific numerical bounds for V . Choosing
bounds for the variances of the coefficients can be a challenging task. So, instead,
Leamer[4] suggests that we focus on the expected R2 of the model (which,
probably, most people would find easier). After standardizing the variables and
considering bounds proportional to the identity matrix, the prior variance v2

of each beta-coefficient equals to the expected R2 divided by the number of
parameters k of the model, that is, v2 = E(R2)/k.

This would give us the bounds:

v2low =
E(R2)low

k
≤ v2 ≤ E(R2)up

k
= v2up (5)

As for the ranges of expected R2, Leamer[4] proposes three choices: (i) a
context-minimal range [0.1, 1.0]; (ii) a pessimistic range [0.1, 0.5]; and, (iii) an
optimistic range [0.5, 1.0]. We can generalize this to allow sets of “favorite”
variables. Note that whereas the bounds of V are diagonal, we are allowing
non-diagonal priors.
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3 The sValues R package: A Growth Regressions
Example

The sValues package comes with an example dataset on economic growth used
by various papers (FSL[1], SDM[5] and Leamer[4]). This dataset comprises the
growth of real GDP per capita from 1960 to 1996 and other 67 explanatory
variables from 87 countries.

The main function of the package is the sValues function. The standard
approach is to provide a formula specifying the model, a data.frame with
the data and a numerical vector with the R2 bounds (default values are 0.1,
0.5, and 1). As a shortcut, you can omit the formula and the function will
automatically consider the first column as the dependent variable and the rest
as the independent variables. Let’s run the analysis for the economic growth
data.

> library(sValues) # loads package

> data("economic_growth") # loads data

> eg <- sValues(economic_growth) # runs analysis

> eg # prints basic results

Data: economic_growth, Formula: GR6096 ~ .

R2 bounds: 0.1 - 0.5 - 1

abs(S-value) > 1:

R2 (0.1, 1): None

R2 (0.1, 0.5): None

R2 (0.5, 1): BUDDHA CONFUC EAST IPRICE1 P60 RERD

abs(t-value) > 2:

Bayesian (R2 = 0.1): EAST

Bayesian (R2 = 0.5): IPRICE1

Bayesian (R2 = 1): IPRICE1

Unconstrained OLS: IPRICE1

As we can see from the results, only in the “optimistic” scenario some vari-
ables are robust to model ambiguity. Moreover, if we look at the sample uncer-
tainty (t-values), there is only one variable (IPRICE1) which has both |s| > 1
and |t| > 2. This means that any precise inferences about the sign of almost
all the coefficients require stronger prior information about preference for some
variables. It is worth mentioning that these results are in contrast with those
obtained by using the BMA methodologies proposed by FSL[1] and SDM[5],
which can also be implemented in R using the BMS package (see Zeugner[6]).

You can access specific coefficient values with the coef function setting the
argument type to the desired statistic (for example, type = "s_values", type
= "t_values" or type = "extreme_bounds"). For each type, there is also
a wrapper function with the same name, so the command coef(x, type =

"s_values") is equivalent to s_values(x).
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> # gets a complete table like in Leamer[3]

> full_table <- coef(eg)

> full_table[1:5, 1:5] # showing only first five columns and rows

ols_simple b_bayes_0.1 b_bayes_0.5 b_bayes_1 ols_all

IPRICE1 -0.4443075 -0.06260783 -0.1277645 -0.1596315 -0.3827615

CONFUC 0.4735595 0.06838785 0.1149072 0.1311292 0.2761033

EAST 0.5303796 0.07882938 0.1308950 0.1485540 0.1279553

BUDDHA 0.4447188 0.06251667 0.1004677 0.1106633 0.3369219

P60 0.5742210 0.05701799 0.1155436 0.1488612 0.4574343

> # gets just the s_values

> just_svalues <- coef(eg, type = "s_values")

> just_svalues[1:5, ] # showing only first five rows

s_R2_0.1_1 s_R2_0.1_0.5 s_R2_0.5_1

ABSLATIT 0.036236556 0.073865639 0.10136981

AIRDIST 0.002881237 -0.004704409 0.07160259

AVELF -0.135043178 -0.196852073 -0.50902679

BRIT 0.140973114 0.175892738 0.59795954

BUDDHA 0.309053323 0.440686400 1.21091252

Let’s print the extreme bounds in the optimistic case of two specific coeffi-
cients: GOVNOM1 and IPRICE1.

> extreme_bounds(eg)[c("GOVNOM1", "IPRICE1"),

+ c("R2_0.5_1.low", "R2_0.5_1.up")]

R2_0.5_1.low R2_0.5_1.up

GOVNOM1 -0.1566860 0.03367756

IPRICE1 -0.2167692 -0.07062673

As we had seen, IPRICE1 is robust to different prior variances, with extreme
bounds of −0.22 and −0.07. On the other hand, GOVNOM1 may change its sign
with different specifications varying from −0.16 to 0.03.

The package comes with some plot methods to explore the results. Let’s plot
the t-statistics versus the s-values per coefficient, highlighting the uncertain and
fragile estimates, as shown in Figure 2.

> plot(eg, type = "t_s_plot", R2_bounds = c(0.5, 1))

Also, let’s investigate how the coefficient for Government GDP Share varies
with different prior R2 as shown in Figure 3 (the Bayesian estimates consider
a diagonal V with the corresponding v2 specified before and can be thought of
weighted averages of the 2k regressions [4]).

> plot(eg, type = "beta_plot", variables = "GOVNOM1",

+ error_bar = TRUE, ext_bounds_shades = TRUE)
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Figure 2: t-statistics vs s-values
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Figure 3: Bayesian estimates for GOVNOM1, with error bars and extreme
bounds (shaded areas).
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The sValues function allows you to define some of the variables as“favorites”
with larger prior variances. In that case, you need to specify a favorites

paramater - with the names of the favorite variables - and a R2_favorites

parameter with the R2 bounds for the favorite variables. For example, the code
below reproduces the favorite variables chosen in Leamer[4]:

> favorites <- c("GDPCH60L", "OTHFRAC", "ABSLATIT",

+ "LT100CR", "BRIT", "GOVNOM1",

+ "WARTIME", "SCOUT","P60", "PRIEXP70",

+ "OIL", "H60", "POP1560", "POP6560")

> eg_fav <- sValues(economic_growth, R2_bounds = c(0.5, 1),

+ favorites = favorites, R2_favorites = c(0.4, 0.8))

> eg_fav

Data: economic_growth, Formula: GR6096 ~ .

R2 bounds: 0.5 - 1

Favorites: GDPCH60L OTHFRAC ABSLATIT LT100CR BRIT GOVNOM1 and 8 more.

R2 favorites: 0.4 - 0.8

abs(S-value) > 1:

R2 (0.5, 1): EAST GDPCH60L IPRICE1 OTHFRAC P60 PRIEXP70

abs(t-value) > 2:

Bayesian (R2 = 0.5): P60

Bayesian (R2 = 1): P60

Unconstrained OLS: IPRICE1

Further developments

We need more tools that help us study the sensitivity of our inferences and help
us communicate it effectively. The idea of the sValues package is to bring one
of these tools to the R community, with functions that (hopefully) make some
of these tasks easier. This is still a work in progress though, and there is a lot
that can be improved: what kind of tables, summaries or visualizations do you
think would be most helpful both for exploring and for reporting the results? In
what directions should the method be extended? For comments or suggestions,
feel free to contact me or to make pull requests on github.
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